論文の概要: Neural-network acceleration of projection-based model-order-reduction
for finite plasticity: Application to RVEs
- arxiv url: http://arxiv.org/abs/2109.07747v1
- Date: Thu, 16 Sep 2021 06:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 13:53:25.902917
- Title: Neural-network acceleration of projection-based model-order-reduction
for finite plasticity: Application to RVEs
- Title(参考訳): 有限可塑性に対する射影型モデル次数還元のニューラルネットワーク加速:RCVへの応用
- Authors: S. Vijayaraghavan, L. Wu, L. Noels, S. P. A. Bordas, S. Natarajan, L.
A. A. Beex
- Abstract要約: ニューラルネットワークは、射影に基づくRVEのモデル順序推論を加速するために開発された。
オンラインシミュレーションは方程式を含まないため、方程式の系を反復的に解く必要はない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Compared to conventional projection-based model-order-reduction, its
neural-network acceleration has the advantage that the online simulations are
equation-free, meaning that no system of equations needs to be solved
iteratively. Consequently, no stiffness matrix needs to be constructed and the
stress update needs to be computed only once per increment. In this
contribution, a recurrent neural network is developed to accelerate a
projection-based model-order-reduction of the elastoplastic mechanical
behaviour of an RVE. In contrast to a neural network that merely emulates the
relation between the macroscopic deformation (path) and the macroscopic stress,
the neural network acceleration of projection-based model-order-reduction
preserves all microstructural information, at the price of computing this
information once per increment.
- Abstract(参考訳): 従来のプロジェクションに基づくモデル次数還元と比較して、そのニューラルネットワークの加速はオンラインシミュレーションが方程式なしという利点を持つ。
したがって、剛性行列を構築する必要はなく、応力更新はインクリメント毎に1回だけ計算する必要がある。
本研究では,rveの弾塑性力学的挙動の投影に基づくモデル次数還元を高速化するために,リカレントニューラルネットワークを開発した。
単にマクロ的な変形(パス)とマクロ的な応力の関係をエミュレートするニューラルネットワークとは対照的に、プロジェクションベースのモデル順序推論のニューラルネットワークアクセラレーションは、この情報をインクリメント毎に一度計算する価格で全てのミクロ構造情報を保存する。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
長期の数値安定性を確保するためには,システムに関連するシンプレクティックな構造を維持することが重要である。
本稿では,次元削減のための確立されたツールであるオートエンコーダの精神の中で,新しいニューラルネットワークアーキテクチャを提案する。
ネットワークのトレーニングには,非標準勾配降下法を適用した。
論文 参考訳(メタデータ) (2023-12-15T18:20:25Z) - Correcting auto-differentiation in neural-ODE training [19.472357078065194]
ニューラルネットワークが基礎となるODEフローを近似するために高次形式を用いる場合、自動微分を用いたブルートフォース計算は、しばしば非収束人工振動を生成する。
本稿では、これらの振動を効果的に排除し、計算を修正し、基礎となる流れの更新を尊重する簡単な後処理手法を提案する。
論文 参考訳(メタデータ) (2023-06-03T20:34:14Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Unifying Model-Based and Neural Network Feedforward: Physics-Guided
Neural Networks with Linear Autoregressive Dynamics [0.0]
本稿では,未知の非線形力学を補償するフィードフォワード制御フレームワークを開発する。
フィードフォワードコントローラは、物理モデルとニューラルネットワークの並列結合としてパラメータ化される。
論文 参考訳(メタデータ) (2022-09-26T08:01:28Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Neural net modeling of equilibria in NSTX-U [0.0]
我々は平衡モデルと形状制御モデルに関連する2つのニューラルネットワークを開発する。
ネットワークにはEFIT01再構成アルゴリズムでトレーニングされた自由境界均衡解法であるEqnetと、Gspert符号でトレーニングされたPertnetが含まれる。
本報告では,これらのモデルが閉ループシミュレーションで確実に使用できることを示す。
論文 参考訳(メタデータ) (2022-02-28T16:09:58Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。