論文の概要: Deep recurrent networks predicting the gap evolution in adiabatic
quantum computing
- arxiv url: http://arxiv.org/abs/2109.08492v3
- Date: Mon, 22 May 2023 19:43:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 02:09:51.748780
- Title: Deep recurrent networks predicting the gap evolution in adiabatic
quantum computing
- Title(参考訳): 断熱量子コンピューティングにおけるギャップ進化を予測するディープリカレントネットワーク
- Authors: Naeimeh Mohseni, Carlos Navarrete-Benlloch, Tim Byrnes, Florian
Marquardt
- Abstract要約: 断熱量子計算において、パラメータの関数としてのハミルトンのギャップの依存性は、計算の速度を最適化するために重要である。
本稿では,パラメータ空間がシステムサイズと線形にスケールする場合に,長期記憶ネットワークがギャップを予測することに成功していることを示す。
注目すべきは、このアーキテクチャがモデルの空間構造を扱うために畳み込みニューラルネットワークと組み合わされると、トレーニング中にニューラルネットワークで見られるものよりも大きなシステムサイズに対してギャップ進化を予測できることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In adiabatic quantum computing finding the dependence of the gap of the
Hamiltonian as a function of the parameter varied during the adiabatic sweep is
crucial in order to optimize the speed of the computation. Inspired by this
challenge,} in this work we explore the potential of deep learning for
discovering a mapping from the parameters that fully identify a problem
Hamiltonian to the \ctxt{aforementioned parametric dependence of the gap}
applying different network architectures. Through this example, we
\gtxt{conjecture} that a limiting factor for the learnability of \dtxt{such
problems} is the size of the input, that is, how the number of parameters
needed to identify the Hamiltonian scales with the system size. We show that a
long short-term memory network succeeds in predicting the gap when the
parameter space scales linearly with system size. Remarkably, we show that once
this architecture is combined with a convolutional neural network to deal with
the spatial structure of the model, the gap evolution can even be predicted for
system sizes larger than the ones seen by the neural network during training.
This provides a significant speedup in comparison with the existing exact and
approximate algorithms in calculating the gap.
- Abstract(参考訳): adiabatic quantum computing において、アディアバティックスイープ中に変化するパラメータの関数としてのハミルトニアンのギャップの依存性を見つけることは、計算の速度を最適化するために重要である。
この課題に触発されて,本研究では,問題を完全に同定するパラメータから,異なるネットワークアーキテクチャを応用した \ctxt{aforementioned parametric dependence of the gap} へのマッピングを見つけるための深層学習の可能性を検討する。
この例を通じて、 \gtxt{conjecture} は、dtxt{such problems} の学習可能性の制限因子が入力のサイズ、すなわちハミルトニアンスケールをシステムサイズで識別するのに必要なパラメータの数であることを示す。
パラメータ空間がシステムサイズと線形にスケールする場合,長期の短期記憶ネットワークはギャップの予測に成功することを示す。
注目すべきは、このアーキテクチャがモデルの空間構造を扱うために畳み込みニューラルネットワークと組み合わされると、トレーニング中にニューラルネットワークで見られるものよりも大きなシステムサイズに対してギャップ進化を予測できることである。
これにより、ギャップを計算する際の既存の完全および近似アルゴリズムと比較して、大幅な高速化が得られる。
関連論文リスト
- Training Hamiltonian neural networks without backpropagation [0.0]
本稿では,ハミルトニアン系を近似するニューラルネットワークのトレーニングを高速化するバックプロパゲーションフリーアルゴリズムを提案する。
従来のハミルトニアンニューラルネットワークよりもCPUの方が100倍以上高速であることを示す。
論文 参考訳(メタデータ) (2024-11-26T15:22:30Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Deep Neural Networks as Variational Solutions for Correlated Open
Quantum Systems [0.0]
より強力なモデルで直接密度行列をパラメータ化することで、より良い変分アンザッツ関数が得られることを示す。
本稿では, 散逸的一次元逆場イジングモデルと2次元散逸的ハイゼンベルクモデルについて述べる。
論文 参考訳(メタデータ) (2024-01-25T13:41:34Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
スパースディープラーニングは、基礎となるターゲット関数のスパース表現を復元することで、課題に対処する。
構造化された空間によって圧縮されたディープニューラルアーキテクチャは、低レイテンシ推論、データスループットの向上、エネルギー消費の削減を提供する。
本研究では, (i) Spike-and-Slab Group Lasso (SS-GL) と (ii) Spike-and-Slab Group Horseshoe (SS-GHS) を併用した過剰ノードを誘発する構造的疎いベイズニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T17:14:18Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
ニューラルネットワークの深さ、幅、データセットサイズがモデル品質にどう影響するかを特徴付けることは、ディープラーニング理論における中心的な問題である。
線形ネットワークが無限深度で証明可能な最適予測を行うことを示す。
また、データに依存しない先行法により、広い線形ネットワークにおけるベイズ模型の証拠は無限の深さで最大化されることを示す。
論文 参考訳(メタデータ) (2022-12-29T20:57:46Z) - Deep learning of spatial densities in inhomogeneous correlated quantum
systems [0.0]
ランダムポテンシャルに基づいてトレーニングされた畳み込みニューラルネットワークを用いて,密度の予測が可能であることを示す。
我々は,不均一な状況下での干渉と相互作用の相互作用と相転移を伴うモデルの挙動をうまく扱えることを示す。
論文 参考訳(メタデータ) (2022-11-16T17:10:07Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
グラフニューラルネットワーク(GNN)は、しばしば予測アーキテクチャのコアコンポーネントである。
ほとんどの時間前GNNでは、計算複雑性はグラフ内のリンクの回数のシーケンスの長さの2乗係数までスケールする。
本稿では,時間的・空間的両方のダイナミックスを効率的に符号化するスケーラブルなアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-14T09:47:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。