論文の概要: Symplectic Neural Flows for Modeling and Discovery
- arxiv url: http://arxiv.org/abs/2412.16787v1
- Date: Sat, 21 Dec 2024 22:02:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:55:35.416044
- Title: Symplectic Neural Flows for Modeling and Discovery
- Title(参考訳): モデリングと発見のためのシンプレクティックニューラルフロー
- Authors: Priscilla Canizares, Davide Murari, Carola-Bibiane Schönlieb, Ferdia Sherry, Zakhar Shumaylov,
- Abstract要約: SympFlowはパラメータ化ハミルトンフローマップを用いて設計された時間依存型シンプレクティックニューラルネットワークである。
後ろ向きのエラー解析を可能にし、シンプレクティック構造を確実に保存する。
カオス的・散逸的システムを含む多種多様な問題に対するSympFlowの有効性を実証する。
- 参考スコア(独自算出の注目度): 9.786274281068815
- License:
- Abstract: Hamilton's equations are fundamental for modeling complex physical systems, where preserving key properties such as energy and momentum is crucial for reliable long-term simulations. Geometric integrators are widely used for this purpose, but neural network-based methods that incorporate these principles remain underexplored. This work introduces SympFlow, a time-dependent symplectic neural network designed using parameterized Hamiltonian flow maps. This design allows for backward error analysis and ensures the preservation of the symplectic structure. SympFlow allows for two key applications: (i) providing a time-continuous symplectic approximation of the exact flow of a Hamiltonian system--purely based on the differential equations it satisfies, and (ii) approximating the flow map of an unknown Hamiltonian system relying on trajectory data. We demonstrate the effectiveness of SympFlow on diverse problems, including chaotic and dissipative systems, showing improved energy conservation compared to general-purpose numerical methods and accurate
- Abstract(参考訳): ハミルトン方程式は、エネルギーや運動量などの重要な性質を保存することが信頼できる長期シミュレーションに不可欠である複雑な物理系をモデル化するための基礎となる。
幾何学的積分器はこの目的のために広く使われているが、これらの原理を組み込んだニューラルネットワークベースの手法はいまだ未解明である。
この研究は、パラメータ化されたハミルトンフローマップを用いて設計された時間依存のシンプレクティックニューラルネットワークであるSympFlowを紹介した。
この設計は後方誤り解析を可能にし、シンプレクティック構造を確実に保存する。
SympFlowは2つの主要なアプリケーションを可能にします。
i) ハミルトニアン系の正確な流れの時間連続シンプレクティック近似を与える−-それが満足する微分方程式に基づいて―
(2)軌道データに依存する未知のハミルトン系のフローマップを近似する。
カオス的・散逸的システムを含む多種多様な問題に対するSympFlowの有効性を実証し、汎用数値法と比較して省エネ性が向上し、精度が向上したことを示す。
関連論文リスト
- Hamiltonian Matching for Symplectic Neural Integrators [9.786274281068815]
ハミルトンの運動方程式は、天文学、量子力学、粒子物理学、気候科学など、物理学の様々な分野における基本的な枠組みを形成している。古典的な数値解法は通常、これらの系の時間発展を計算するために用いられる。
パラメトリック時間依存ハミルトニアン関数の正確なフローマップの列を構成するニューラルネットワークに基づく新しいシンプレクティックインテグレータであるSympFlowを提案する。
論文 参考訳(メタデータ) (2024-10-23T20:21:56Z) - Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
ハミルトン系は、保守的であり、すなわちエネルギーは進化を通して保存されるという重要な性質を持っている。
特にハミルトニアンニューラルネットワークは、構造的帰納バイアスをNNモデルに組み込むメカニズムとして登場した。
共振器のスキームはノイズに対して頑健であり,ノイズ観測から状態変数がサンプリングされた場合のハミルトニアン系の近似が良好であることを示す。
論文 参考訳(メタデータ) (2024-09-17T12:45:49Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics [21.05257407408671]
本稿では,分割可能な基底関数を既存手法のスーパーセットとして用いた連続畳み込みの一般的な定式化を提案する。
基本関数に含まれる偶数および奇数対称性が安定性と精度の重要な側面であることを示す。
論文 参考訳(メタデータ) (2024-03-25T12:15:47Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
本稿では,既存のハミルトンニューラルネットワーク構造を適応型シンプレクティックリカレントニューラルネットワークに組み合わせたアーキテクチャを提案する。
このアーキテクチャは、ハミルトニアン力学を予測する際に、これまで提案されていたニューラルネットワークよりも大幅に優れていた。
本手法は, 単一パラメータポテンシャルに対して有効であり, 長期間にわたって正確な予測を行うことができることを示す。
論文 参考訳(メタデータ) (2023-07-22T19:04:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Hamiltonian Neural Networks with Automatic Symmetry Detection [0.0]
ハミルトニアンニューラルネットワーク(HNN)は、以前の物理知識を組み込むために導入された。
我々は、ニューラルネットワークに対称性を検出し、埋め込むために、Lie代数フレームワークを用いてHNNを強化した。
論文 参考訳(メタデータ) (2023-01-19T07:34:57Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
本稿では,離散化を体系的に実現する幾何学的枠組みを提案する。
我々は、シンプレクティックな非保守的、特に散逸的なハミルトン系への一般化が、制御された誤差まで収束率を維持することができることを示す。
論文 参考訳(メタデータ) (2020-04-15T00:36:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。