論文の概要: An Exploration of Learnt Representations of W Jets
- arxiv url: http://arxiv.org/abs/2109.10919v1
- Date: Wed, 22 Sep 2021 18:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-25 03:32:05.098908
- Title: An Exploration of Learnt Representations of W Jets
- Title(参考訳): wジェットの学習表現の探索
- Authors: Jack H. Collins
- Abstract要約: I present a Variational Autoencoder (VAE) training on collider Physics data (specally boosted $W$ jets)
VAEは意味論的かつ解釈可能な潜在空間方向を持つデータ多様体の具体的な表現を学習する。
本稿では,このスケーリングから算出した学習表現の次元性の2つの尺度を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: I present a Variational Autoencoder (VAE) trained on collider physics data
(specifically boosted $W$ jets), with reconstruction error given by an
approximation to the Earth Movers Distance (EMD) between input and output jets.
This VAE learns a concrete representation of the data manifold, with
semantically meaningful and interpretable latent space directions which are
hierarchically organized in terms of their relation to physical EMD scales in
the underlying physical generative process. A hyperparameter $\beta$ controls
the resolution at which the VAE is sensitive to structures in the data
manifold. The variation of the latent space structure with $\beta$, and the
scaling of some VAE properties, provide insight into scale dependent structure
of the dataset and its information complexity. I introduce two measures of the
dimensionality of the learnt representation that are calculated from this
scaling.
- Abstract(参考訳): 入力ジェットと出力ジェットの間の地球移動距離(EMD)の近似による再構成誤差を,コライダー物理データ(特に$W$ジェット)に基づいて訓練した変分オートエンコーダ(VAE)を提案する。
このVAEはデータ多様体の具体的な表現を学習し、下層の物理的生成過程における物理的EMDスケールとの関係の観点から階層的に整理された意味論的かつ解釈可能な潜在空間方向を持つ。
ハイパーパラメータ$\beta$は、VAEがデータ多様体の構造に敏感な解像度を制御する。
遅延空間構造の$\beta$による変動と、いくつかのVAE特性のスケーリングは、データセットのスケール依存構造とその情報複雑性に関する洞察を与える。
本稿では,このスケーリングから算出した学習表現の次元性の2つの尺度を紹介する。
関連論文リスト
- Invariant Discovery of Features Across Multiple Length Scales: Applications in Microscopy and Autonomous Materials Characterization [3.386918190302773]
可変オートエンコーダ(VAE)は、画像データの変動の基本的な要因を特定する強力なツールとして登場した。
異なる長さスケールでサンプル化した記述子を用いて,VAEの漸進的トレーニングに基づいて,SI-VAEアプローチを導入する。
論文 参考訳(メタデータ) (2024-08-01T01:48:46Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - Bayesian Hyperbolic Multidimensional Scaling [2.5944208050492183]
低次元多様体が双曲型であるとき、多次元スケーリングに対するベイズ的アプローチを提案する。
ケース制御可能性近似は、より大きなデータ設定における後部分布からの効率的なサンプリングを可能にする。
提案手法は,シミュレーション,標準基準データセット,インディアン村のネットワークデータ,およびヒトの遺伝子発現データを用いて,最先端の代替手法に対して評価する。
論文 参考訳(メタデータ) (2022-10-26T23:34:30Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - RENs: Relevance Encoding Networks [0.0]
本稿では,遅延空間に先行する自動相対性決定(ARD)を用いて,データ固有のボトルネック次元を学習する新しい確率的VOEベースのフレームワークであるrelevance encoding network (RENs)を提案する。
提案モデルは,サンプルの表現や生成品質を損なうことなく,関連性のあるボトルネック次元を学習することを示す。
論文 参考訳(メタデータ) (2022-05-25T21:53:48Z) - Robust Self-Supervised LiDAR Odometry via Representative Structure
Discovery and 3D Inherent Error Modeling [67.75095378830694]
そこで我々は,2段階のオドメトリ推定ネットワークを構築し,一連の部分領域変換を推定してエゴモーメントを求める。
本稿では,トレーニング,推論,マッピングフェーズにおける信頼できない構造の影響を軽減することを目的とする。
我々の2フレームのオードメトリーは、翻訳/回転誤差の点で、過去の芸術の状態を16%/12%上回っている。
論文 参考訳(メタデータ) (2022-02-27T12:52:27Z) - Geometry-Aware Hamiltonian Variational Auto-Encoder [0.0]
変分自己エンコーダ(VAE)は、データよりもはるかに小さな次元空間にある潜在変数を抽出することにより、次元削減を行うのに適したツールであることが証明されている。
しかし、そのような生成モデルは、医学のような多くの現実の分野に豊富に存在する小さなデータセットで訓練すると、性能が低下する可能性がある。
このような潜在空間モデリングは、より意味のある、よりリアルなデータ生成、より信頼性の高いクラスタリングに繋がる基盤構造に関する有用な情報を提供する、と我々は主張する。
論文 参考訳(メタデータ) (2020-10-22T08:26:46Z) - Variational Autoencoder with Learned Latent Structure [4.41370484305827]
学習潜在構造を持つ変分オートエンコーダ(VAELLS)について紹介する。
VAELLS は、学習可能な多様体モデルを VAE の潜在空間に組み込む。
我々は、既知の潜在構造を持つ実例でモデルを検証し、実世界のデータセット上でその能力を実証する。
論文 参考訳(メタデータ) (2020-06-18T14:59:06Z) - Augmented Parallel-Pyramid Net for Attention Guided Pose-Estimation [90.28365183660438]
本稿では、注意部分モジュールと微分可能な自動データ拡張を備えた拡張並列ピラミドネットを提案する。
我々は、データ拡張のシーケンスをトレーニング可能なCNNコンポーネントとして定式化する新しいポーズ検索空間を定義する。
特に,本手法は,挑戦的なCOCOキーポイントベンチマークとMPIIデータセットの最先端結果において,トップ1の精度を実現する。
論文 参考訳(メタデータ) (2020-03-17T03:52:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。