論文の概要: Discovering PDEs from Multiple Experiments
- arxiv url: http://arxiv.org/abs/2109.11939v1
- Date: Fri, 24 Sep 2021 12:56:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-27 20:36:17.073301
- Title: Discovering PDEs from Multiple Experiments
- Title(参考訳): 複数の実験からpdesの発見
- Authors: Georges Tod, Gert-Jan Both, Remy Kusters
- Abstract要約: ランダム化適応型グループであるLassoスポーシティ推定器を導入し、グループ化されたスポーシティを促進し、深層学習に基づくPDE発見フレームワークで実装する。
実験の結果,複数の高雑音データセットからより一般化可能なPDEが検出できた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated model discovery of partial differential equations (PDEs) usually
considers a single experiment or dataset to infer the underlying governing
equations. In practice, experiments have inherent natural variability in
parameters, initial and boundary conditions that cannot be simply averaged out.
We introduce a randomised adaptive group Lasso sparsity estimator to promote
grouped sparsity and implement it in a deep learning based PDE discovery
framework. It allows to create a learning bias that implies the a priori
assumption that all experiments can be explained by the same underlying PDE
terms with potentially different coefficients. Our experimental results show
more generalizable PDEs can be found from multiple highly noisy datasets, by
this grouped sparsity promotion rather than simply performing independent model
discoveries.
- Abstract(参考訳): 偏微分方程式(PDE)の自動モデル発見は通常、基礎となる支配方程式を推測するために単一の実験またはデータセットを考える。
実際には、実験はパラメータ、初期条件、境界条件に固有の自然変数を持ち、単純に平均化できない。
ランダム化適応型グループであるLassoスポーシティ推定器を導入し、グループ化されたスポーシティを促進し、深層学習に基づくPDE発見フレームワークで実装する。
これは、全ての実験が、潜在的に異なる係数を持つ同じ基礎となるPDE項で説明できるという事前仮定を示す学習バイアスを作成することができる。
実験の結果、より一般化可能なpdesは、単に独立したモデル発見を行うのではなく、このグループ化されたスパーシティ促進によって、複数の騒がしいデータセットから発見できることがわかった。
関連論文リスト
- What You See is Not What You Get: Neural Partial Differential Equations and The Illusion of Learning [0.0]
科学機械学習のための微分可能プログラミングは、第一原理物理学から派生したニューラルネットワークをPDE内に組み込む。
コミュニティでは、NeuralPDEはブラックボックスモデルよりも信頼性が高く、一般化可能であると広く仮定されている。
我々は、NeuralPDEと差別化可能なプログラミングモデルは、PDEシミュレーションで私たちが考えているように物理的に解釈可能であるか?
論文 参考訳(メタデータ) (2024-11-22T18:04:46Z) - Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots [10.018568337210876]
本稿では,SDEの時空間からのドリフトと拡散を共同で推定する,最初の包括的アプローチを提案する。
これらのステップのそれぞれが、Kullback-Leiblerデータセットに関して常に最適であることを示す。
論文 参考訳(メタデータ) (2024-10-30T06:28:21Z) - DiffusionPDE: Generative PDE-Solving Under Partial Observation [10.87702379899977]
生成拡散モデルを用いて偏微分方程式(PDE)を解くための一般的な枠組みを提案する。
そこで本研究では, 学習した生成先行が, 部分観察下において, 広範囲のPDEを正確に解くための多元的枠組みに導かれることを示す。
論文 参考訳(メタデータ) (2024-06-25T17:48:24Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Latent SDEs on Homogeneous Spaces [9.361372513858043]
偏微分方程式(SDE)の解によって観測された幾何学的過程が支配される潜在変数モデルにおける変分ベイズ推論の問題を考察する。
実験により,提案型の潜伏SDEを既存の一段階のオイラー・丸山スキームを用いて効率的に学習できることが示されている。
論文 参考訳(メタデータ) (2023-06-28T14:18:52Z) - Intervention Generalization: A View from Factor Graph Models [7.117681268784223]
操作されたシステムの分布の因子化に関する最小限の仮定に基づいて、過去の実験から新しい条件への飛躍をいかに保証するかを詳しく検討する。
仮定された$textitinterventional Factor Model$ (IFM) は必ずしも情報であるとは限らないが、不測のコンバウンディングとフィードバックのメカニズムを明示的にモデル化する必要性を便利に抽象化する。
論文 参考訳(メタデータ) (2023-06-06T21:44:23Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
本稿では,不特定変分因果解法(DICD)を提案する。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
論文 参考訳(メタデータ) (2022-05-31T09:29:07Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
エネルギーベースモデルの最大学習確率を一般化するために,擬球面コントラスト分散(PS-CD)を提案する。
PS-CDは難解な分割関数を避け、学習目的の一般化されたファミリーを提供する。
論文 参考訳(メタデータ) (2021-11-01T09:17:15Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
粒子変分推論(PVI)は、後部分布の実験的近似としてモデルのアンサンブルを用いる。
PVIは、最適化されたモデルの多様性を保証するために、各モデルを反発力で反復的に更新する。
我々は,新たな一般化誤差を導出し,モデルの多様性を高めて低減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T12:13:51Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。