論文の概要: DiffusionPDE: Generative PDE-Solving Under Partial Observation
- arxiv url: http://arxiv.org/abs/2406.17763v2
- Date: Fri, 01 Nov 2024 00:08:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 14:33:34.210816
- Title: DiffusionPDE: Generative PDE-Solving Under Partial Observation
- Title(参考訳): DiffusionPDE:部分観察によるPDE生成
- Authors: Jiahe Huang, Guandao Yang, Zichen Wang, Jeong Joon Park,
- Abstract要約: 生成拡散モデルを用いて偏微分方程式(PDE)を解くための一般的な枠組みを提案する。
そこで本研究では, 学習した生成先行が, 部分観察下において, 広範囲のPDEを正確に解くための多元的枠組みに導かれることを示す。
- 参考スコア(独自算出の注目度): 10.87702379899977
- License:
- Abstract: We introduce a general framework for solving partial differential equations (PDEs) using generative diffusion models. In particular, we focus on the scenarios where we do not have the full knowledge of the scene necessary to apply classical solvers. Most existing forward or inverse PDE approaches perform poorly when the observations on the data or the underlying coefficients are incomplete, which is a common assumption for real-world measurements. In this work, we propose DiffusionPDE that can simultaneously fill in the missing information and solve a PDE by modeling the joint distribution of the solution and coefficient spaces. We show that the learned generative priors lead to a versatile framework for accurately solving a wide range of PDEs under partial observation, significantly outperforming the state-of-the-art methods for both forward and inverse directions.
- Abstract(参考訳): 生成拡散モデルを用いて偏微分方程式(PDE)を解くための一般的な枠組みを提案する。
特に,古典的解法の適用に必要な場面について,十分な知識を持っていないシナリオに注目した。
既存の PDE 手法の多くは、データや基礎となる係数の観測が不完全である場合、実際の測定では一般的な仮定である。
本研究では,解空間と係数空間の連成分布をモデル化することにより,不足情報を同時に満たし,PDEを解くことができるDiffusionPDEを提案する。
学習した生成先行は,部分的な観察下で多種多様なPDEを正確に解き,前向きと逆方向の両方で最先端の手法を著しく上回り,多種多様なPDEを高精度に解決する枠組みに導かれることを示す。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Base Models for Parabolic Partial Differential Equations [30.565534769404536]
パラボリック偏微分方程式(PDE)は、様々な数学的対象の進化をモデル化するために多くの分野に現れる。
このPDEの異なるパラメータに対応する複数のシナリオにおいて、パラメトリックPDEに対する解の解や関数を計算することがしばしば必要である。
本稿では,メタラーニングを基盤としたパラボリックPDEの解を見つけるためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:04:28Z) - Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media [1.8416014644193066]
パラメタライズされた部分微分方程式(PDE)のためのサロゲート学習のための新しいデータ駆動型フレームワークを提案する。
確率論的学習目的(probabilistic, learning objective)は、重み付けされた残留物を用いてPDEを探索し、仮想データのソースを提供する。
これは、物理を意識した暗黙の解法と組み合わせられ、元のPDEのより粗い、離散化されたバージョンで構成されている。
論文 参考訳(メタデータ) (2024-05-29T12:01:49Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - AdjointDEIS: Efficient Gradients for Diffusion Models [2.0795007613453445]
拡散SDEに対する連続随伴方程式は、実際には単純なODEに単純化されていることを示す。
また, 顔形態形成問題の形で, 対向攻撃による誘導生成に対するAdjointDEISの有効性を実証した。
論文 参考訳(メタデータ) (2024-05-23T19:51:33Z) - Closure Discovery for Coarse-Grained Partial Differential Equations Using Grid-based Reinforcement Learning [2.9611509639584304]
本稿では,グリッドベース強化学習を用いて,未解決PDEにおけるクロージャの同定のための体系的アプローチを提案する。
我々は, 対流方程式とバーガース方程式の数値解を用いて, フレームワークの機能と限界を実証する。
論文 参考訳(メタデータ) (2024-02-01T19:41:04Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - A Neural RDE-based model for solving path-dependent PDEs [5.6293920097580665]
経路依存偏微分方程式(PPDE)の概念は、金融市場における経路依存偏微分の文脈で最初に導入された。
古典的な PDE と比較して、PPDE の解は無限次元空間変数を含む。
本稿では,PPDEを学習するための大まかなニューラル微分方程式(NRDE)に基づくモデルを提案する。
論文 参考訳(メタデータ) (2023-06-01T20:19:41Z) - PDE+: Enhancing Generalization via PDE with Adaptive Distributional
Diffusion [66.95761172711073]
ニューラルネットワークの一般化は、機械学習における中心的な課題です。
本稿では、入力データを調整することに集中するのではなく、ニューラルネットワークの基盤機能を直接拡張することを提案する。
私たちはこの理論的フレームワークを、$textbfPDE+$$textbfPDE$ with $textbfA$daptive $textbfD$istributional $textbfD$iffusionとして実践しました。
論文 参考訳(メタデータ) (2023-05-25T08:23:26Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。