論文の概要: Intelligent Decision Assistance Versus Automated Decision-Making:
Enhancing Knowledge Work Through Explainable Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2109.13827v1
- Date: Tue, 28 Sep 2021 15:57:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:40:21.930001
- Title: Intelligent Decision Assistance Versus Automated Decision-Making:
Enhancing Knowledge Work Through Explainable Artificial Intelligence
- Title(参考訳): インテリジェント意思決定支援バーサス自動意思決定:説明可能な人工知能による知識労働の強化
- Authors: Max Schemmer and Niklas K\"uhl and Gerhard Satzger
- Abstract要約: 我々は,新たなDSSクラス,すなわち知能決定支援(IDA)を提案する。
IDAは、自動意思決定を通じて知識労働者に影響を与えることなく、知識労働者をサポートする。
具体的には、具体的なAIレコメンデーションを保ちながら、説明可能なAI(XAI)の技術を使用することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While recent advances in AI-based automated decision-making have shown many
benefits for businesses and society, they also come at a cost. It has for long
been known that a high level of automation of decisions can lead to various
drawbacks, such as automation bias and deskilling. In particular, the
deskilling of knowledge workers is a major issue, as they are the same people
who should also train, challenge and evolve AI. To address this issue, we
conceptualize a new class of DSS, namely Intelligent Decision Assistance (IDA)
based on a literature review of two different research streams -- DSS and
automation. IDA supports knowledge workers without influencing them through
automated decision-making. Specifically, we propose to use techniques of
Explainable AI (XAI) while withholding concrete AI recommendations. To test
this conceptualization, we develop hypotheses on the impacts of IDA and provide
first evidence for their validity based on empirical studies in the literature.
- Abstract(参考訳): AIベースの自動意思決定の最近の進歩は、企業や社会に多くの利益をもたらしている一方で、コストも伴っている。
高いレベルの意思決定の自動化は、自動化バイアスやデスクランディングなど、さまざまな欠点につながることが長年知られている。
特に、知識労働者の卓越化は、AIを訓練し、挑戦し、進化させるのと同じ人々であるため、大きな問題である。
この問題に対処するため,我々は2つの異なる研究ストリーム(dssとオートメーション)の文献レビューに基づいて,新たなdss(intelligent decision assistance,ida)の概念化を行う。
IDAは、自動意思決定を通じて知識労働者に影響を与えることなく、知識労働者をサポートする。
具体的には、具体的なAIレコメンデーションを保ちながら、説明可能なAI(XAI)の技術を使用することを提案する。
この概念化をテストするため、我々はIDAの影響に関する仮説を開発し、文学における実証研究に基づくその妥当性の最初の証拠を提供する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
ブラックボックスAIシステムは、誤った判断を下すと、責任と説明責任の問題を引き起こす可能性がある。
説明可能なAI(XAI)は、開発者とエンドユーザの間の知識ギャップを埋めようとしている。
論文 参考訳(メタデータ) (2023-01-13T01:08:49Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - On the Influence of Explainable AI on Automation Bias [0.0]
我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
ホテルのレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
論文 参考訳(メタデータ) (2022-04-19T12:54:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - The human-AI relationship in decision-making: AI explanation to support
people on justifying their decisions [4.169915659794568]
人々は、AIがどのように機能するか、そしてそのシステムとの関係を構築するために、その成果をもっと意識する必要があります。
意思決定のシナリオでは、人々はAIがどのように機能するか、そしてそのシステムとの関係を構築する結果についてもっと意識する必要があります。
論文 参考訳(メタデータ) (2021-02-10T14:28:34Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
人工知能ベースの「ブラックボックス」システム/モデルからの決定の説明力の欠如は、ハイステークアプリケーションでAIを採用するための重要な障害です。
相互ケーススタディ/タスクにより、一般的なXAI(Explainable Artificial Intelligence)手法を実証します。
競争優位性を多角的に分析します。
我々はXAIを媒体として、責任や人間中心のAIへの道を推奨する。
論文 参考訳(メタデータ) (2021-01-23T06:15:34Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。