論文の概要: Higher order quantum reservoir computing for non-intrusive reduced-order models
- arxiv url: http://arxiv.org/abs/2407.21602v1
- Date: Wed, 31 Jul 2024 13:37:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:27:41.692694
- Title: Higher order quantum reservoir computing for non-intrusive reduced-order models
- Title(参考訳): 非侵入型還元次モデルのための高次量子貯水池計算
- Authors: Vinamr Jain, Romit Maulik,
- Abstract要約: 量子貯水池計算技術(QRC)は、相互接続された小さな量子系のアンサンブルを利用するハイブリッド量子古典的フレームワークである。
QRCは, 複雑な非線形力学系を安定かつ高精度に予測できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting dynamical systems is of importance to numerous real-world applications. When possible, dynamical systems forecasts are constructed based on first-principles-based models such as through the use of differential equations. When these equations are unknown, non-intrusive techniques must be utilized to build predictive models from data alone. Machine learning (ML) methods have recently been used for such tasks. Moreover, ML methods provide the added advantage of significant reductions in time-to-solution for predictions in contrast with first-principle based models. However, many state-of-the-art ML-based methods for forecasting rely on neural networks, which may be expensive to train and necessitate requirements for large amounts of memory. In this work, we propose a quantum mechanics inspired ML modeling strategy for learning nonlinear dynamical systems that provides data-driven forecasts for complex dynamical systems with reduced training time and memory costs. This approach, denoted the quantum reservoir computing technique (QRC), is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems via classical linear feedback connections. By mapping the dynamical state to a suitable quantum representation amenable to unitary operations, QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner. We demonstrate the efficacy of this framework through benchmark forecasts of the NOAA Optimal Interpolation Sea Surface Temperature dataset and compare the performance of QRC to other ML methods.
- Abstract(参考訳): 動的システムの予測は多くの実世界のアプリケーションにとって重要である。
可能であれば、微分方程式のような第一原理に基づくモデルに基づいて力学系の予測が構築される。
これらの方程式が未知の場合、データのみから予測モデルを構築するために非侵入的手法を利用する必要がある。
機械学習(ML)メソッドは、最近そのようなタスクに使われている。
さらに、ML法は、第一原理に基づくモデルとは対照的に、予測のための時間と解法の大幅な削減の利点を付加する。
しかし、最先端のMLベースの予測手法の多くはニューラルネットワークに依存しており、大量のメモリの要求をトレーニングし、必要とする場合に費用がかかる可能性がある。
本研究では、複雑な力学系に対して、トレーニング時間とメモリコストを削減したデータ駆動予測を提供する非線形力学系を学習するための、量子力学にインスパイアされたMLモデリング戦略を提案する。
このアプローチは量子貯水池計算技術(QRC)と呼ばれ、古典的な線形フィードバック接続を通じて相互接続された小さな量子システムのアンサンブルを利用するハイブリッド量子古典的フレームワークである。
動的状態をユニタリ演算に相応しい量子表現にマッピングすることにより、QRCは複雑な非線形力学系を安定かつ正確な方法で予測することができる。
本研究では,NOAA Optimal Interpolation Sea Surface Temperature データセットのベンチマーク予測を通じて,このフレームワークの有効性を実証し,QRCの性能を他のML手法と比較する。
関連論文リスト
- Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
本稿では、物理に基づく先行技術と高度な機械学習技術との相乗効果を生かした、新しいデータ駆動型フレームワークを提案する。
本フレームワークでは, 特定の非線形系のクラスに合わせて, 特定の物理系を組み込んだ4つのアルゴリズムを紹介する。
これらの事前の統合はまた、ニューラルネットワークの表現力を高め、物理的現象に典型的な複雑なパターンをキャプチャすることを可能にする。
論文 参考訳(メタデータ) (2024-06-20T23:10:41Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)モデルは、長期量子力学をシミュレートするために用いられる。
この研究は、オープン量子システムの動的進化をシミュレートする効果的な機械学習アプローチを構築する。
論文 参考訳(メタデータ) (2022-05-07T08:53:55Z) - Dynamical simulation via quantum machine learning with provable
generalization [2.061594137938085]
本研究では,QML法を用いて量子力学を短期量子ハードウェア上でシミュレートするフレームワークを開発した。
このフレームワーク内でのアルゴリズムのトレーニングデータ要求を厳格に分析する。
我々は,IBMQ-BogotaのTrotterizationの20倍の時間をシミュレーションした。
論文 参考訳(メタデータ) (2022-04-21T17:15:24Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
本研究では, 定量的構造活性相関に基づく221種類のフェノールの毒性予測のためのQMLモデルを開発した。
その結果、量子エンタングルメントによって強化されたデータエンコーディングは、従来のエンタングルよりも表現力が高いことが示唆された。
論文 参考訳(メタデータ) (2020-08-18T02:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。