論文の概要: Nearest neighbor process: weak convergence and non-asymptotic bound
- arxiv url: http://arxiv.org/abs/2110.15083v2
- Date: Thu, 23 Mar 2023 14:04:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 19:05:59.661902
- Title: Nearest neighbor process: weak convergence and non-asymptotic bound
- Title(参考訳): 最も近い隣の過程:弱収束と非漸近境界
- Authors: Fran\c{c}ois Portier
- Abstract要約: 近辺から所定点までの実証測度を導入し, 中央統計量として検討した。
均一な非漸近境界は、一様エントロピー数上でよく知られた条件の下で成立し、しばしばVapnik-Chervonenkis (Vapnik-Chervonenkis) と呼ばれる。
このことは、標準的アプローチ(非局所的アプローチ)が、隣り合う測度によって単に標準的経験的測度を置き換える可能性を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The empirical measure resulting from the nearest neighbors to a given point -
\textit{the nearest neighbor measure} - is introduced and studied as a central
statistical quantity. First, the associated empirical process is shown to
satisfy a uniform central limit theorem under a (local) bracketing entropy
condition on the underlying class of functions (reflecting the localizing
nature of the nearest neighbor algorithm). Second a uniform non-asymptotic
bound is established under a well-known condition, often referred to as
Vapnik-Chervonenkis, on the uniform entropy numbers. The covariance of the
Gaussian limit obtained in the uniform central limit theorem is equal to the
conditional covariance operator (given the point of interest). This suggests
the possibility of extending standard approaches - non local - replacing simply
the standard empirical measure by the nearest neighbor measure while using the
same way of making inference but with the nearest neighbors only instead of the
full data.
- Abstract(参考訳): 最寄りの近傍から与えられた点\textit{the near neighbor measure} への経験的測度は、中央統計量として導入され、研究されている。
第一に、関連する経験的過程は、基礎となる関数のクラス(近傍アルゴリズムの局所化の性質を反映する)上の(局所)括弧エントロピー条件の下で一様中心極限定理を満たすことが示される。
第二に、一様非漸近境界は、一様エントロピー数上のよく知られた条件の下で成立し、しばしばVapnik-Chervonenkisと呼ばれる。
一様中心極限定理で得られるガウス極限の共分散は条件共分散作用素と等しい(興味のある点が与えられる)。
これは、非局所的(non local)な標準アプローチが、推論方法と同じ方法を用いて、単に標準実証測度を、完全なデータの代わりに最も近い隣人に置き換える可能性を示唆している。
関連論文リスト
- Conditional Independence of 1D Gibbs States with Applications to Efficient Learning [0.0]
熱平衡におけるスピン鎖は, 個々の領域が近傍に強く相関する相関構造を持つことを示す。
これらの測度が任意の正の温度で超指数的に崩壊することを証明している。
論文 参考訳(メタデータ) (2024-02-28T17:28:01Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Coefficient-based Regularized Distribution Regression [4.21768682940933]
我々は、確率測度から実数値応答への回帰を目的とした係数に基づく正規化分布回帰を、Hilbert空間(RKHS)上で考える。
回帰関数の正則範囲が異なるアルゴリズムの漸近挙動を包括的に研究した。
最適速度は、いくつかの穏やかな条件下で得られるが、これは1段のサンプル化された最小値の最適速度と一致する。
論文 参考訳(メタデータ) (2022-08-26T03:46:14Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Reweighting samples under covariate shift using a Wasserstein distance
criterion [0.0]
両試料の実験的測度間のワッサーシュタイン距離を最小化する最適再重み付けについて検討した。
期待されるワッサーシュタイン距離の一貫性とある程度の収束速度が導出される。
これらの結果は、不確実性定量化を非結合推定に適用し、最近近傍回帰に対する一般化誤差の有界化に適用する。
論文 参考訳(メタデータ) (2020-10-19T07:23:55Z) - Consistent Online Gaussian Process Regression Without the Sample
Complexity Bottleneck [14.309243378538012]
本稿では,現在の後方中心のHellingerメトリックに対して,エラー近傍を修正可能なオンライン圧縮方式を提案する。
一定の誤差半径の場合、POG は集団後部の近傍 (Theorem 1(ii)) に収束するが、特徴空間の計量エントロピーによって決定される有限メモリのオン・ウォーストに収束する。
論文 参考訳(メタデータ) (2020-04-23T11:52:06Z) - A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings [14.71280987722701]
条件付き平均埋め込みに対する演算子なし測度理論的アプローチを提案する。
我々は、経験的推定を得るために自然な回帰解釈を導出する。
自然副産物として、平均不一致とヒルベルト=シュミット独立基準の条件付き類似点を得る。
論文 参考訳(メタデータ) (2020-02-10T12:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。