論文の概要: Nearest neighbor empirical processes
- arxiv url: http://arxiv.org/abs/2110.15083v3
- Date: Tue, 30 Jan 2024 10:59:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 20:16:31.165226
- Title: Nearest neighbor empirical processes
- Title(参考訳): 最も近い隣人の経験過程
- Authors: Fran\c{c}ois Portier
- Abstract要約: 近辺から所与の点$x$への応答に基づく実証測度を導入し、中央統計量として研究する。
均一な非漸近境界は、一様エントロピー数上でよく知られた条件の下で成立し、しばしばVapnik-Chervonenkis (Vapnik-Chervonenkis) と呼ばれる。
これは、標準公式を用いて、全データの代わりに最も近い隣人だけを用いて分散を推定できる可能性を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the regression framework, the empirical measure based on the responses
resulting from the nearest neighbors, among the covariates, to a given point
$x$ is introduced and studied as a central statistical quantity. First, the
associated empirical process is shown to satisfy a uniform central limit
theorem under a local bracketing entropy condition on the underlying class of
functions reflecting the localizing nature of the nearest neighbor algorithm.
Second a uniform non-asymptotic bound is established under a well-known
condition, often referred to as Vapnik-Chervonenkis, on the uniform entropy
numbers. The covariance of the Gaussian limit obtained in the uniform central
limit theorem is simply equal to the conditional covariance operator given the
covariate value. This suggests the possibility of using standard formulas to
estimate the variance by using only the nearest neighbors instead of the full
data. This is illustrated on two problems: the estimation of the conditional
cumulative distribution function and local linear regression.
- Abstract(参考訳): 回帰フレームワークでは、共変量のうち隣人から与えられた点x$への応答に基づく経験的尺度を導入し、中央統計量として研究する。
第一に、関連する経験的過程は、近傍アルゴリズムの局所化性を反映した関数の基底クラス上の局所括弧エントロピー条件の下で一様中心極限定理を満たすことが示される。
第二に、一様非漸近境界は、一様エントロピー数上のよく知られた条件の下で成立し、しばしばVapnik-Chervonenkisと呼ばれる。
一様中心極限定理で得られるガウス極限の共分散は、余変数値が与えられた条件共分散作用素に単純に等しい。
これは、標準式を用いて、全データの代わりに最寄りの近傍のみを用いて分散を推定する可能性を示唆する。
これは条件累積分布関数の推定と局所線形回帰という2つの問題について説明する。
関連論文リスト
- Conditional Independence of 1D Gibbs States with Applications to Efficient Learning [0.23301643766310368]
熱平衡におけるスピン鎖は, 個々の領域が近傍に強く相関する相関構造を持つことを示す。
これらの測度が任意の正の温度で超指数的に崩壊することを証明している。
論文 参考訳(メタデータ) (2024-02-28T17:28:01Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Coefficient-based Regularized Distribution Regression [4.21768682940933]
我々は、確率測度から実数値応答への回帰を目的とした係数に基づく正規化分布回帰を、Hilbert空間(RKHS)上で考える。
回帰関数の正則範囲が異なるアルゴリズムの漸近挙動を包括的に研究した。
最適速度は、いくつかの穏やかな条件下で得られるが、これは1段のサンプル化された最小値の最適速度と一致する。
論文 参考訳(メタデータ) (2022-08-26T03:46:14Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Reweighting samples under covariate shift using a Wasserstein distance
criterion [0.0]
両試料の実験的測度間のワッサーシュタイン距離を最小化する最適再重み付けについて検討した。
期待されるワッサーシュタイン距離の一貫性とある程度の収束速度が導出される。
これらの結果は、不確実性定量化を非結合推定に適用し、最近近傍回帰に対する一般化誤差の有界化に適用する。
論文 参考訳(メタデータ) (2020-10-19T07:23:55Z) - Consistent Online Gaussian Process Regression Without the Sample
Complexity Bottleneck [14.309243378538012]
本稿では,現在の後方中心のHellingerメトリックに対して,エラー近傍を修正可能なオンライン圧縮方式を提案する。
一定の誤差半径の場合、POG は集団後部の近傍 (Theorem 1(ii)) に収束するが、特徴空間の計量エントロピーによって決定される有限メモリのオン・ウォーストに収束する。
論文 参考訳(メタデータ) (2020-04-23T11:52:06Z) - A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings [14.71280987722701]
条件付き平均埋め込みに対する演算子なし測度理論的アプローチを提案する。
我々は、経験的推定を得るために自然な回帰解釈を導出する。
自然副産物として、平均不一致とヒルベルト=シュミット独立基準の条件付き類似点を得る。
論文 参考訳(メタデータ) (2020-02-10T12:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。