論文の概要: Duality for Continuous Graphical Models
- arxiv url: http://arxiv.org/abs/2111.01938v1
- Date: Tue, 2 Nov 2021 23:11:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 14:28:31.984788
- Title: Duality for Continuous Graphical Models
- Title(参考訳): 連続図形モデルの双対性
- Authors: Mehdi Molkaraie
- Abstract要約: 双対正規係数グラフと因子グラフの双対性定理は離散的グラフィカルモデルに対して検討されている。
因子グラフ双対定理の連続的グラフィカルモデルへの応用について述べる。
- 参考スコア(独自算出の注目度): 4.56877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dual normal factor graph and the factor graph duality theorem have been
considered for discrete graphical models. In this paper, we show an application
of the factor graph duality theorem to continuous graphical models.
Specifically, we propose a method to solve exactly the Gaussian graphical
models defined on the ladder graph if certain conditions on the local
covariance matrices are satisfied. Unlike the conventional approaches, the
efficiency of the method depends on the position of the zeros in the local
covariance matrices. The method and details of the dualization are illustrated
on two toy examples.
- Abstract(参考訳): 双対正規因子グラフと因子グラフ双対性定理は離散グラフィカルモデルに対して検討されてきた。
本稿では,因子グラフ双対定理の連続的グラフィカルモデルへの応用について述べる。
具体的には,局所共分散行列の条件を満たす場合,ラダーグラフ上に定義されたガウス図形モデルを正確に解く方法を提案する。
従来の手法とは異なり、手法の効率は局所共分散行列における零点の位置に依存する。
双対化の方法と詳細は2つのおもちゃの例で示される。
関連論文リスト
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - Encoder Embedding for General Graph and Node Classification [4.178980693837599]
エンコーダの埋め込み行列が大数の法則と中心極限定理を満たすことを証明している。
ある条件下では、クラスごとの正規性を達成し、識別分析による最適な分類を可能にする。
論文 参考訳(メタデータ) (2024-05-24T11:51:08Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
本稿では,1)グラフラプラシア行列のスペクトル分解と2)拡散過程に基づく新しいグラフ生成モデルGRASPを提案する。
具体的には、固有ベクトルと固有値のサンプリングにデノナイジングモデルを用い、グラフラプラシアン行列と隣接行列を再構成する。
我々の置換不変モデルは各ノードの固有ベクトルに連結することでノードの特徴を扱える。
論文 参考訳(メタデータ) (2024-02-29T09:26:46Z) - The Exact Determinant of a Specific Class of Sparse Positive Definite
Matrices [5.330240017302621]
スパースガウス図形モデルの特定のクラスに対して、共分散行列の行列式に対する閉形式解を提供する。
私たちのフレームワークでは、グラフィカルなインタラクションモデルは$mathcalK_n$と$mathcalK_n-1$の代替製品と同等です。
論文 参考訳(メタデータ) (2023-11-11T18:31:25Z) - Projections of Model Spaces for Latent Graph Inference [18.219577154655006]
グラフニューラルネットワークは、グラフの接続構造を帰納バイアスとして利用する。
潜在グラフ推論は、適切なグラフ構造を学習して、モデルの下流のパフォーマンスを拡散し改善することに焦点を当てる。
論文 参考訳(メタデータ) (2023-03-21T11:20:22Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Embeddings via Tensor Products and Approximately Orthonormal Codes [0.0]
この表現は超次元計算におけるバインド・アンド・サムのアプローチに該当することを示す。
提案手法の動作を特徴付けるいくつかの正確な結果を確立した。
大規模なスパースグラフの動的圧縮表現へのその応用を簡潔に議論する。
論文 参考訳(メタデータ) (2022-08-18T10:56:37Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。