論文の概要: Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series
- arxiv url: http://arxiv.org/abs/2401.04979v1
- Date: Wed, 10 Jan 2024 07:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 15:18:47.432913
- Title: Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series
- Title(参考訳): 不規則サンプル時系列解析のためのニューラル微分方程式の可逆解
- Authors: YongKyung Oh, Dongyoung Lim, Sungil Kim
- Abstract要約: 本稿では,不規則な時系列データと不完全時系列データの複雑度を扱うために,ニューラル微分方程式(NDE)に基づく非可逆解を提案する。
計算負荷を低く抑えながら可逆性を確保するニューラルフローを用いたニューラル制御微分方程式(Neural Controlled Differential Equations, ニューラルCDE)の変動について提案する。
我々のアプローチの核となるのは拡張された二重潜在状態アーキテクチャであり、様々な時系列タスクにおいて高精度に設計されている。
- 参考スコア(独自算出の注目度): 4.14360329494344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To handle the complexities of irregular and incomplete time series data, we
propose an invertible solution of Neural Differential Equations (NDE)-based
method. While NDE-based methods are a powerful method for analyzing
irregularly-sampled time series, they typically do not guarantee reversible
transformations in their standard form. Our method suggests the variation of
Neural Controlled Differential Equations (Neural CDEs) with Neural Flow, which
ensures invertibility while maintaining a lower computational burden.
Additionally, it enables the training of a dual latent space, enhancing the
modeling of dynamic temporal dynamics. Our research presents an advanced
framework that excels in both classification and interpolation tasks. At the
core of our approach is an enhanced dual latent states architecture, carefully
designed for high precision across various time series tasks. Empirical
analysis demonstrates that our method significantly outperforms existing
models. This work significantly advances irregular time series analysis,
introducing innovative techniques and offering a versatile tool for diverse
practical applications.
- Abstract(参考訳): 不規則および不完全時系列データの複雑さに対処するため,ニューラル微分方程式(NDE)に基づく非可逆解を提案する。
ndeベースの方法は不規則にサンプリングされた時系列を分析する強力な方法であるが、通常は標準形式での可逆変換を保証しない。
本手法は, 計算負荷を低く抑えながら可逆性を確保する神経制御微分方程式(ニューラルcdes)のニューラルフローによる変動を示唆する。
さらに、二重潜在空間のトレーニングが可能となり、動的時間力学のモデリングが強化される。
本研究は,分類タスクと補間タスクの両方に優れた高度なフレームワークを提案する。
我々のアプローチの核心は拡張された二重潜在状態アーキテクチャであり、様々な時系列タスクにわたって高精度に設計されている。
実証分析の結果,本手法は既存モデルを大きく上回ることがわかった。
この研究は不規則な時系列分析を著しく進歩させ、革新的な技術を導入し、多様な実用用途に汎用的なツールを提供する。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
単一溶液軌道の不規則サンプリングおよび雑音観測から,スカラー常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを開発した。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たな観測解の法則を推測することができる。
論文 参考訳(メタデータ) (2023-07-24T08:46:12Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
本稿では,長期記憶を強制し,基礎となる力学系の大域的表現を保存する定式化であるPolyODEを提案する。
提案手法は理論的保証に支えられ,過去と将来のデータの再構築において,過去の成果よりも優れていたことを実証する。
論文 参考訳(メタデータ) (2023-03-03T10:49:09Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization [3.7565501074323224]
分散整数最適化 (MIO) を用いたSINDyDy問題の厳密な定式化を提案し, 分散制約付き回帰問題を数秒で証明可能な最適性を求める。
正確なモデル発見における我々のアプローチの劇的な改善について説明するとともに、よりサンプリング効率が高く、ノイズに耐性があり、物理的制約の緩和にも柔軟である。
論文 参考訳(メタデータ) (2022-06-01T01:43:45Z) - Deep Efficient Continuous Manifold Learning for Time Series Modeling [11.876985348588477]
対称正定値行列はコンピュータビジョン、信号処理、医療画像解析において研究されている。
本稿では,リーマン多様体とコレスキー空間の間の微分同相写像を利用する枠組みを提案する。
時系列データの動的モデリングのために,多様体常微分方程式とゲートリカレントニューラルネットワークを体系的に統合した連続多様体学習法を提案する。
論文 参考訳(メタデータ) (2021-12-03T01:38:38Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
この問題に対処するための新しいドメインに依存しないアプローチを提案する。
我々は、通常の微分方程式から導かれる物理インフォームド・ランダムな特徴の合成を用いる。
提案手法は,ベンチマーク回帰タスクにおいて,他の多くの確率モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:55:13Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
変動微分ネットワーク(VSDN)という,フレキシブルな連続時間リカレントニューラルネットワークを提案する。
VSDNは神経微分方程式(SDE)による散発時間系列の複雑なダイナミクスを埋め込む
VSDNは最先端の継続的ディープラーニングモデルより優れており、散発時系列の予測やタスクにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-11T01:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。