論文の概要: A coarse space acceleration of deep-DDM
- arxiv url: http://arxiv.org/abs/2112.03732v1
- Date: Tue, 7 Dec 2021 14:41:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 13:54:24.182700
- Title: A coarse space acceleration of deep-DDM
- Title(参考訳): 深部ddmの粗い空間加速度
- Authors: Valentin Mercier, Serge Gratton, Pierre Boudier
- Abstract要約: 我々は最近提案されたPDEの解法に対するディープ・ダム・アプローチの拡張について述べる。
粗い空間補正は、解法の収束の劣化を軽減することができることを示す。
実験により,本手法は深部ddm法の顕著な加速を誘導することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of deep learning methods for solving PDEs is a field in full
expansion. In particular, Physical Informed Neural Networks, that implement a
sampling of the physical domain and use a loss function that penalizes the
violation of the partial differential equation, have shown their great
potential. Yet, to address large scale problems encountered in real
applications and compete with existing numerical methods for PDEs, it is
important to design parallel algorithms with good scalability properties. In
the vein of traditional domain decomposition methods (DDM), we consider the
recently proposed deep-ddm approach. We present an extension of this method
that relies on the use of a coarse space correction, similarly to what is done
in traditional DDM solvers. Our investigations shows that the coarse correction
is able to alleviate the deterioration of the convergence of the solver when
the number of subdomains is increased thanks to an instantaneous information
exchange between subdomains at each iteration. Experimental results demonstrate
that our approach induces a remarkable acceleration of the original deep-ddm
method, at a reduced additional computational cost.
- Abstract(参考訳): PDEを解くためのディープラーニング手法の使用は、完全な拡張の分野である。
特に、物理的領域のサンプリングを実装し、偏微分方程式の違反をペナライズする損失関数を使用する物理的インフォームドニューラルネットワークは、その大きなポテンシャルを示している。
しかし、実際のアプリケーションで発生する大規模問題に対処し、PDEの既存の数値手法と競合するためには、優れたスケーラビリティ特性を持つ並列アルゴリズムを設計することが重要である。
従来のドメイン分解法(ddm)では,最近提案されている深層ddm法を考察する。
本稿では,従来のDDM解法と同様,粗い空間補正を利用する手法の拡張について述べる。
本研究は,各繰り返しにおけるサブドメイン間の瞬時情報交換により,サブドメイン数の増加に伴う解法の収束の悪化を軽減することができることを示す。
実験の結果,本手法は計算コストを削減し,オリジナルのdeep-ddm法を著しく高速化することを示した。
関連論文リスト
- PACMANN: Point Adaptive Collocation Method for Artificial Neural Networks [44.99833362998488]
PINNは、一組のコロケーションポイントに対して決定されたPDE残差を含む損失関数を最小化する。
これまでの研究では、これらのコロケーションポイントの数と分布がPINNソリューションの精度に大きな影響を与えることが示されている。
ニューラルネットワーク(PACMANN)のための点適応コロケーション法を提案する。
論文 参考訳(メタデータ) (2024-11-29T11:31:11Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
改良されたアプローチは、深層学習の進歩で大きな成功をもたらしたが、それらは大量の地底深度アノテーションに依存している。
教師なしドメイン適応(UDA)は、教師付き学習の制約を緩和するため、ラベル付きソースデータからラベルなしターゲットデータに知識を転送する。
本稿では,その特徴空間をコンテンツやスタイルコンポーネントに分解することを学ぶための,学習特徴分解 for Adaptation (LFDA) と呼ばれる新しいMDEのためのUDA手法を提案する。
論文 参考訳(メタデータ) (2022-07-30T08:05:35Z) - Adversarial Multi-task Learning Enhanced Physics-informed Neural
Networks for Solving Partial Differential Equations [9.823102211212582]
本稿では,多タスク学習手法,不確実性強調損失,勾配手術を学習pdeソリューションの文脈で活用する新しいアプローチを提案する。
実験では,提案手法が有効であることが判明し,従来手法と比較して未発見のデータポイントの誤差を低減できた。
論文 参考訳(メタデータ) (2021-04-29T13:17:46Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z) - Solving inverse-PDE problems with physics-aware neural networks [0.0]
偏微分方程式の逆問題における未知の場を見つけるための新しい枠組みを提案する。
我々は,ディープニューラルネットワークの高表現性を,既存の数値アルゴリズムの精度と信頼性とを融合した普遍関数推定器とする。
論文 参考訳(メタデータ) (2020-01-10T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。