論文の概要: Comparison of Markov chains via weak Poincar\'e inequalities with
application to pseudo-marginal MCMC
- arxiv url: http://arxiv.org/abs/2112.05605v1
- Date: Fri, 10 Dec 2021 15:36:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-13 18:12:54.257500
- Title: Comparison of Markov chains via weak Poincar\'e inequalities with
application to pseudo-marginal MCMC
- Title(参考訳): 弱poincar\e不等式によるマルコフ鎖の比較と疑似マージmmcへの応用
- Authors: Christophe Andrieu, Anthony Lee, Sam Power, Andi Q. Wang
- Abstract要約: マルコフ連鎖の平衡への有界収束に対する弱ポアンカーの不等式として知られるある種の機能的不等式の使用について検討する。
本研究では, 独立メトロポリス・ハスティングス・サンプリング法や, 難易度を求める疑似マルジナル手法などの手法に対して, サブ幾何学的収束境界の導出を可能にすることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the use of a certain class of functional inequalities known as
weak Poincar\'e inequalities to bound convergence of Markov chains to
equilibrium. We show that this enables the straightforward and transparent
derivation of subgeometric convergence bounds for methods such as the
Independent Metropolis--Hastings sampler and pseudo-marginal methods for
intractable likelihoods, the latter being subgeometric in many practical
settings. These results rely on novel quantitative comparison theorems between
Markov chains. Associated proofs are simpler than those relying on
drift/minorization conditions and the tools developed allow us to recover and
further extend known results as particular cases. We are then able to provide
new insights into the practical use of pseudo-marginal algorithms, analyse the
effect of averaging in Approximate Bayesian Computation (ABC) and the use of
products of independent averages, and also to study the case of lognormal
weights relevant to particle marginal Metropolis--Hastings (PMMH).
- Abstract(参考訳): マルコフ連鎖の平衡への有界収束に対する弱ポアンカーの不等式として知られるある種の機能的不等式の使用について検討する。
これにより,独立メトロポリス-ハスティンス・サンプラー法や疑似マージ法といった手法のサブジオメトリ収束境界の単純かつ透明な導出が可能となり,後者は多くの実用的場面でサブジオメトリとなっている。
これらの結果はマルコフ連鎖の間の新しい定量的比較定理に依存する。
関連する証明はドリフト/マイノライズ条件に依存しているものよりも簡単であり, 開発したツールにより, 特定の事例として既知の結果を回復し, さらに拡張することができる。
そこで我々は,疑似マージナルアルゴリズムの実用化に関する新たな知見を提供し,近似ベイズ計算(ABC)における平均化の効果と独立平均値の利用について分析し,粒子境界メトロポリス・ハスティングス(PMMH)に関連する対数正規重みの事例について検討する。
関連論文リスト
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Dimension-free Relaxation Times of Informed MCMC Samplers on Discrete Spaces [5.075066314996696]
離散空間上でのメトロポリス・ハスティングスアルゴリズムに対する一般混合時間境界を開発する。
我々は,情報化メトロポリス・ハスティングスアルゴリズムのクラスに対して,問題次元に依存しない緩和時間を達成するための十分な条件を確立する。
論文 参考訳(メタデータ) (2024-04-05T02:40:45Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Hoeffding's Inequality for Markov Chains under Generalized
Concentrability Condition [15.228649445346473]
本稿では,積分確率計量(IPM)によって定義される一般化可積分性条件下でのマルコフ鎖の不等式について検討する。
我々のフレームワークの柔軟性により、伝統的な意味でのエルゴード的マルコフ連鎖を超えて、ホーフディングの不等式を適用することができる。
論文 参考訳(メタデータ) (2023-10-04T16:21:23Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Three rates of convergence or separation via U-statistics in a dependent
framework [5.929956715430167]
我々はこの理論的なブレークスルーを、3つの異なる研究分野における現在の知識の状態を推し進めることで実行した。
まず、MCMC法によるトレースクラス積分作用素のスペクトル推定のための新しい指数関数不等式を確立する。
さらに、ペアワイズ損失関数とマルコフ連鎖サンプルを扱うオンラインアルゴリズムの一般化性能について検討する。
論文 参考訳(メタデータ) (2021-06-24T07:10:36Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
格子量子場論の研究において、格子理論を定義するパラメータは連続体物理学にアクセスする臨界性に向けて調整されなければならない。
経路積分の領域に適用される輪郭変形に基づいてモンテカルロ推定器を「変形」する手法を提案する。
我々は,フローベースMCMCが臨界減速を緩和し,オブザーシフォールドが原理的応用のばらつきを指数関数的に低減できることを実証した。
論文 参考訳(メタデータ) (2021-06-03T16:37:05Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
本論文は,最適化が容易なjmmdの統一形式を理論的に導出する。
統合JMMDから、JMMDは分類に有利な特徴ラベル依存を低下させることを示す。
本稿では,その依存を促進する新たなmmd行列を提案し,ラベル分布シフトにロバストな新しいラベルカーネルを考案する。
論文 参考訳(メタデータ) (2021-01-25T09:46:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。