論文の概要: Conversational Search with Mixed-Initiative -- Asking Good Clarification
Questions backed-up by Passage Retrieval
- arxiv url: http://arxiv.org/abs/2112.07308v1
- Date: Tue, 14 Dec 2021 11:27:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 16:11:39.592318
- Title: Conversational Search with Mixed-Initiative -- Asking Good Clarification
Questions backed-up by Passage Retrieval
- Title(参考訳): 混合開始型会話検索 -- パス検索に裏付けられた質問の質疑応答
- Authors: Yosi Mass, Doron Cohen, Asaf Yehudai and David Konopnicki
- Abstract要約: 我々は,対話型検索のシナリオを混合開始型で扱う。つまり,ユーザ回答,システム回答(明確化質問),ユーザ回答などである。
本研究は,会話の文脈に応じて,次の明確化問題を選択するタスクに焦点をあてる。
提案手法は,関係する候補の明確化質問の初期選択と,それらの候補を再評価するための2つのディープラーニングモデルの微調整に使用される経路探索を利用する。
- 参考スコア(独自算出の注目度): 9.078765961879467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We deal with a scenario of conversational search with mixed-initiative:
namely user-asks system-answers, as well as system-asks (clarification
questions) and user-answers. We focus on the task of selecting the next
clarification question, given conversation context. Our method leverages
passage retrieval that is used both for an initial selection of relevant
candidate clarification questions, as well as for fine-tuning two deep-learning
models for re-ranking these candidates. We evaluated our method on two
different use-cases. The first is an open domain conversational search in a
large web collection. The second is a task-oriented customer-support setup. We
show that our method performs well on both use-cases.
- Abstract(参考訳): 我々は,対話型検索のシナリオを混合開始型で扱う。つまり,システム質問,システム質問(明確化質問),ユーザ回答である。
我々は,会話の文脈から次の明確化問題を選択するタスクに焦点をあてる。
提案手法は,関係する候補の明確化質問の初期選択と,それらの候補を再評価するための2つのディープラーニングモデルの微調整に利用される。
本手法を2つの異なるユースケースで評価した。
1つ目は、大きなWebコレクション内のオープンドメインの会話検索である。
2つ目はタスク指向のカスタマーサポート設定です。
本手法は両ユースケースで良好に機能することを示す。
関連論文リスト
- Using LLMs to Investigate Correlations of Conversational Follow-up Queries with User Satisfaction [32.32365329050603]
そこで本稿では,会話検索エンジンNaver Cueから18人のユーザのフォローアップクエリパターンの分類法を提案する。
クエリ修正に関する既存の文献と比較して、フォローアップクエリの背後にある新たなモチベーションとアクションが明らかになった。
最初の結果から,Clarifying Queries, Excluding Condition, Substitutioning Condition with follow-up queryなど,いくつかの不満のシグナルが示唆された。
論文 参考訳(メタデータ) (2024-07-18T05:10:35Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
情報検索対話システムは電子商取引システムで広く利用されている。
クエリバッグに基づくPseudo Relevance Feedback framework(QB-PRF)を提案する。
関連クエリを備えたクエリバッグを構築し、擬似シグナルとして機能し、情報検索の会話をガイドする。
論文 参考訳(メタデータ) (2024-03-22T08:10:32Z) - Evaluating Mixed-initiative Conversational Search Systems via User
Simulation [9.066817876491053]
このような検索システムの自動評価のための対話型ユーザシミュレータUSiを提案する。
Ui が生成した応答は,その基盤となる情報要求と同等であり,人間による回答に匹敵するものであることを示す。
論文 参考訳(メタデータ) (2022-04-17T16:27:33Z) - Soliciting User Preferences in Conversational Recommender Systems via
Usage-related Questions [21.184555512370093]
項目使用量に基づいて暗黙的な質問を行うことにより、嗜好の誘惑に対する新しいアプローチを提案する。
まず,項目利用情報を含む大規模なレビューコーパスから文を識別する。
そして,ニューラルネットワークモデルを用いて,これらの文から暗黙の選好質問を生成する。
論文 参考訳(メタデータ) (2021-11-26T12:23:14Z) - Multi-stage Clarification in Conversational AI: The case of
Question-Answering Dialogue Systems [0.27998963147546135]
対話型質問応答や会話型検索など,様々な情報検索タスクにおいて,明確化の解決が重要な役割を担っている。
そこで本稿では,質問応答対話システムのコンテキストにおいて,質問の明確化とクエリ選択を促すための多段階的明確化機構を提案する。
提案手法は,ユーザエクスペリエンス全体の改善と,競合するベースラインを2つのデータセットで比較する。
論文 参考訳(メタデータ) (2021-10-28T15:45:44Z) - Building and Evaluating Open-Domain Dialogue Corpora with Clarifying
Questions [65.60888490988236]
オープンドメインのシングルターンとマルチターンの会話に焦点を当てたデータセットをリリースする。
我々は最先端のニューラルベースラインをいくつかベンチマークする。
様々な対話における質問の明確化の質を評価するための,オフラインおよびオンラインのステップからなるパイプラインを提案する。
論文 参考訳(メタデータ) (2021-09-13T09:16:14Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue
Systems (ClariQ) [64.60303062063663]
本論文では,対話システムに対する質問の明確化に関する課題について詳述する(ClariQ)。
このチャレンジは、2020年のSearch Oriented Conversational AI (SCAI) EMNLPワークショップで、ConvAI3(Conversational AI Challenge series)の一部として組織されている。
論文 参考訳(メタデータ) (2020-09-23T19:48:02Z) - Guided Transformer: Leveraging Multiple External Sources for
Representation Learning in Conversational Search [36.64582291809485]
あいまいなクエリやフェースドクエリに対する質問を明確にすることは,様々な情報検索システムにおいて有用な手法として認識されている。
本稿では,トランスフォーマーネットワークが学習した表現を,外部情報ソースからの新たなアテンション機構を用いて強化する。
実験では,検索の明確化のための公開データセットを用いて,競合するベースラインと比較して大きな改善点を示した。
論文 参考訳(メタデータ) (2020-06-13T03:24:53Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。