論文の概要: Demanding and Designing Aligned Cognitive Architectures
- arxiv url: http://arxiv.org/abs/2112.10190v1
- Date: Sun, 19 Dec 2021 16:49:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 16:18:44.977584
- Title: Demanding and Designing Aligned Cognitive Architectures
- Title(参考訳): 認知アーキテクチャの要求と設計
- Authors: Koen Holtman
- Abstract要約: AIシステムがより強力で広く普及するにつれ、より広い目標と人類のニーズに合わせた行動を維持することについての議論が高まっている。
この多分野・多分野の議論は、多くの問題を解決する必要がある。
第一の課題は、AIシステムのデザイナに対して、ステークホルダーが何のために役に立つかを明確化することだ。
第2の課題は、有用な知能を報酬のみとして扱う分析的フレーミングを超えていくことだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With AI systems becoming more powerful and pervasive, there is increasing
debate about keeping their actions aligned with the broader goals and needs of
humanity. This multi-disciplinary and multi-stakeholder debate must resolve
many issues, here we examine three of them. The first issue is to clarify what
demands stakeholders might usefully make on the designers of AI systems, useful
because the technology exists to implement them. We make this technical topic
more accessible by using the framing of cognitive architectures. The second
issue is to move beyond an analytical framing that treats useful intelligence
as being reward maximization only. To support this move, we define several AI
cognitive architectures that combine reward maximization with other technical
elements designed to improve alignment. The third issue is how stakeholders
should calibrate their interactions with modern machine learning researchers.
We consider how current fashions in machine learning create a narrative pull
that participants in technical and policy discussions should be aware of, so
that they can compensate for it. We identify several technically tractable but
currently unfashionable options for improving AI alignment.
- Abstract(参考訳): AIシステムがより強力で広く普及するにつれ、より広い目標と人類のニーズに合わせた行動を維持することについての議論が高まっている。
この多分野・多分野の議論は,多くの課題を解決しなければならない。
第一の課題は、AIシステムのデザイナに対して、ステークホルダーが何のために役に立つかを明らかにすることである。
認知アーキテクチャのフレーミングを利用することで、この技術的なトピックをよりアクセスしやすくします。
第2の課題は、有用な知能を報酬の最大化のみとして扱う分析的フレーミングを超えることである。
この動きをサポートするために、報酬の最大化とアライメントを改善するように設計された他の技術要素を組み合わせたいくつかのAI認知アーキテクチャを定義します。
第3の問題は、ステークホルダーが現代の機械学習研究者とのインタラクションをどのように調整すべきかだ。
機械学習の現在の流行が、技術や政策に関する議論の参加者が気付くべき物語の引き金を生み出し、それを補うことができると考えている。
我々は、AIアライメントを改善するための技術的に難解ないくつかの選択肢を特定します。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Can A Cognitive Architecture Fundamentally Enhance LLMs? Or Vice Versa? [0.32634122554913997]
この論文は、人間の認知と心理学からの洞察を、コンピュータ認知アーキテクチャによって具現化されたように取り入れることで、より有能で、より信頼性があり、より人間に近いシステムを開発するのに役立つと論じている。
論文 参考訳(メタデータ) (2024-01-19T01:14:45Z) - Learning to Make Adherence-Aware Advice [8.419688203654948]
本稿では,人間の従順性を考慮した逐次意思決定モデルを提案する。
最適なアドバイスポリシーを学習し、重要なタイムスタンプでのみアドバイスを行う学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-10-01T23:15:55Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.864338632191608]
エンドユーザに対する説明責任重視の機能サポートの欠如は、高度なドメインにおけるAIの安全で責任ある使用を妨げる可能性がある。
我々の研究は、エンドユーザーがXAIを使用する際の技術的な問題を根底から解決することで、新たな研究課題がもたらされることを示している。
このようなエンドユーザにインスパイアされた研究質問は、AIを民主化し、クリティカルドメインにおけるAIの責任ある使用を保証することによって、社会的善を促進できる可能性がある。
論文 参考訳(メタデータ) (2022-08-18T09:44:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Thinking Fast and Slow in AI: the Role of Metacognition [35.114607887343105]
最先端のAIには、(人間)インテリジェンスの概念に自然に含まれる多くの能力がない。
私たちは、人間がこれらの能力を持つことができるメカニズムをよりよく研究することで、これらの能力でAIシステムを構築する方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-05T06:05:38Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。