論文の概要: Entropy Regularized Optimal Transport Independence Criterion
- arxiv url: http://arxiv.org/abs/2112.15265v1
- Date: Fri, 31 Dec 2021 01:49:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 13:51:08.690039
- Title: Entropy Regularized Optimal Transport Independence Criterion
- Title(参考訳): エントロピー正則化最適輸送独立基準
- Authors: Lang Liu, Soumik Pal, Zaid Harchaoui
- Abstract要約: エントロピー規則化された最適輸送に基づく独立基準を導入する。
私たちの基準は、2つのサンプル間の独立性をテストするために使用できます。
我々は、その統計挙動を、ヌル仮説とオルタナティブ仮説の両方の下で研究する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal transport (OT) and its entropy regularized offspring have recently
gained a lot of attention in both machine learning and AI domains. In
particular, optimal transport has been used to develop probability metrics
between probability distributions. We introduce in this paper an independence
criterion based on entropy regularized optimal transport. Our criterion can be
used to test for independence between two samples. We establish non-asymptotic
bounds for our test statistic, and study its statistical behavior under both
the null and alternative hypothesis. Our theoretical results involve tools from
U-process theory and optimal transport theory. We present experimental results
on existing benchmarks, illustrating the interest of the proposed criterion.
- Abstract(参考訳): 最適なトランスポート(OT)とそのエントロピー正規化された子孫は、マシンラーニングとAIドメインの両方で注目を集めている。
特に、最適輸送は確率分布間の確率メトリクスを開発するために用いられてきた。
本稿では,エントロピー正規化最適輸送に基づく独立基準を提案する。
私たちの基準は、2つのサンプル間の独立性をテストするために使用できます。
我々はテスト統計学の非漸近境界を確立し、その統計挙動をヌル仮説と代替仮説の両方の下で研究する。
我々の理論結果は、Uプロセス理論と最適輸送理論のツールを含む。
提案する基準の関心を示しながら,既存のベンチマークで実験結果を示す。
関連論文リスト
- Prediction-Guided Active Experiments [18.494123886098215]
予測誘導能動実験(PGAE)のための新しいフレームワークについて紹介する。
PGAEは、既存の機械学習モデルからの予測を活用して、サンプリングと実験をガイドする。
我々は、PGAEが効率的であり続け、一定の正則性仮定の下で同じ半パラメトリック境界を得ることを示す。
論文 参考訳(メタデータ) (2024-11-18T20:16:24Z) - Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking [21.23500484100963]
最適輸送の枠組みの下で, ほぼ優位性をスムーズなコストで評価する統計モデルを導入する。
また、Sinkhornアルゴリズムを用いた仮説テストフレームワークと効率的な実装を提案する。
複数のメトリクスで評価された大規模言語モデルの比較とベンチマークを行う方法について紹介する。
論文 参考訳(メタデータ) (2024-06-10T16:14:50Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Consistent Optimal Transport with Empirical Conditional Measures [0.6562256987706128]
共振器における2つの関節分布間の最適輸送(OT)の問題点を考察する。
我々は、共同サンプル上で計算されたカーネル化された最小二乗項を使用し、輸送計画の条件的目的に暗黙的に一致する。
本手法は, 治療に対する細胞応答予測の文脈において, 短時間の分類のための即時学習や条件生成などの応用に適用する場合, 最先端の手法を改良する。
論文 参考訳(メタデータ) (2023-05-25T10:01:57Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
逐次的非パラメトリック2サンプルテストと独立テストの問題点について検討する。
私たちは賭けによる(非パラメトリックな)テストの原則に基づいています。
論文 参考訳(メタデータ) (2023-04-29T01:30:33Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - GAN Estimation of Lipschitz Optimal Transport Maps [0.0]
本稿では,ニューラルネットワークに基づく2つの確率分布間の最適輸送マップの統計的に一貫した最初の推定手法を提案する。
正則性仮定の下で、得られた生成元は、サンプルサイズが無限大に増加するにつれて、最適輸送写像に一様収束することを示した。
統計的保証や実用性に対処する従来の作業とは対照的に、最適な輸送用途に道を開くための表現的かつ実現可能な推定器を提供する。
論文 参考訳(メタデータ) (2022-02-16T10:15:56Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
本論文は,最適化が容易なjmmdの統一形式を理論的に導出する。
統合JMMDから、JMMDは分類に有利な特徴ラベル依存を低下させることを示す。
本稿では,その依存を促進する新たなmmd行列を提案し,ラベル分布シフトにロバストな新しいラベルカーネルを考案する。
論文 参考訳(メタデータ) (2021-01-25T09:46:14Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z) - Statistical Optimal Transport posed as Learning Kernel Embedding [0.0]
この研究は、統計学的最適輸送(OT)を、輸送計画のカーネルの平均埋め込みをサンプルベースによる限界埋め込みの推定から学習する、という新しいアプローチを採っている。
重要な結果は、非常に穏やかな条件下では、$epsilon$-optimal recovery of the transport plan と Barycentric-projection based transport map が、完全に次元のないサンプル複雑性で可能であることである。
論文 参考訳(メタデータ) (2020-02-08T14:58:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。