論文の概要: Profitable Strategy Design by Using Deep Reinforcement Learning for
Trades on Cryptocurrency Markets
- arxiv url: http://arxiv.org/abs/2201.05906v1
- Date: Sat, 15 Jan 2022 18:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 14:49:18.756410
- Title: Profitable Strategy Design by Using Deep Reinforcement Learning for
Trades on Cryptocurrency Markets
- Title(参考訳): 暗号通貨市場取引における深層強化学習による利益戦略設計
- Authors: Mohsen Asgari, Seyed Hossein Khasteh
- Abstract要約: 我々は,3つの暗号市場の戦略設計問題に対して,プロキシポリシー最適化,ソフトアクタ-C模倣,ジェネレーティブ・アドバシリティック・ラーニングを適用した。
未確認データに対するテスト結果は、投資家が市場を搾取し利益を得るためのエキスパートシステムを構築する上で、このアプローチの大きな可能性を示している。
- 参考スコア(独自算出の注目度): 2.741266294612776
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Reinforcement Learning solutions have been applied to different control
problems with outperforming and promising results. In this research work we
have applied Proximal Policy Optimization, Soft Actor-Critic and Generative
Adversarial Imitation Learning to strategy design problem of three
cryptocurrency markets. Our input data includes price data and technical
indicators. We have implemented a Gym environment based on cryptocurrency
markets to be used with the algorithms. Our test results on unseen data shows a
great potential for this approach in helping investors with an expert system to
exploit the market and gain profit. Our highest gain for an unseen 66 day span
is 4850 US dollars per 10000 US dollars investment. We also discuss on how a
specific hyperparameter in the environment design can be used to adjust risk in
the generated strategies.
- Abstract(参考訳): 深層強化学習ソリューションは、パフォーマンスと有望な結果を伴う様々な制御問題に適用されている。
本研究は,3つの暗号市場の戦略設計問題に対して,プロキシマルポリシー最適化,ソフトアクタクリティカル,ジェネレーティブ・アドバイサル・イミテーション・ラーニングを適用した。
入力データには価格データと技術指標が含まれています。
我々は、暗号通貨市場に基づくジム環境を実装し、アルゴリズムで使用しました。
未確認データに対するテスト結果は、投資家が市場を搾取し利益を得るためのエキスパートシステムを構築する上で、このアプローチの大きな可能性を示している。
66日間の最高利益は1万ドル投資当たり4850米ドルである。
また,環境設計における特定のハイパーパラメータを用いて,生成した戦略のリスクを調整する方法について論じる。
関連論文リスト
- Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Dynamic Datasets and Market Environments for Financial Reinforcement
Learning [68.11692837240756]
FinRL-Metaは、現実世界の市場からジムスタイルの市場環境へ動的データセットを処理するライブラリである。
我々は,ユーザが新しい取引戦略を設計するための足場として,人気のある研究論文を例示し,再現する。
また、ユーザが自身の結果を視覚化し、相対的なパフォーマンスを評価するために、このライブラリをクラウドプラットフォームにデプロイします。
論文 参考訳(メタデータ) (2023-04-25T22:17:31Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Application of Three Different Machine Learning Methods on Strategy
Creation for Profitable Trades on Cryptocurrency Markets [0.0]
3つの暗号市場の方向検出問題に対して、k-Nearest Neighbours、eXtreme Gradient Boosting、Random Forest分類器を適用する。
未確認のデータに関する当社のテスト結果は、専門家システムを持つ投資家が市場を搾取し、利益を得るのを助けるこのアプローチに大きな可能性を示しています。
論文 参考訳(メタデータ) (2021-05-14T13:42:46Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
本稿では,インターネット上のコミュニティによって組織された2つの市場操作(ポンプとダンプと群衆ポンプ)について,詳細な分析を行う。
ポンプとダンプの仕組みは、株式市場と同じくらい古い詐欺だ。今や、緩やかに規制された暗号通貨市場において、新たな活力を得た。
本報告では,ポンプ群とダンプ群に関する3症例について報告する。
論文 参考訳(メタデータ) (2021-05-03T10:20:47Z) - GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method
for RoboTrading [0.4568777157687961]
外国為替は世界最大の金融市場である。
ほとんどの文献は、歴史的価格情報と技術指標を訓練に用いた。
この問題に対処するため,我々は,技術指標と取引規則から派生した取引規則の特徴を設計した。
論文 参考訳(メタデータ) (2020-08-16T05:33:35Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
本論文は,近年の株式市場予測にディープラーニングを用いた成功に触発されたものである。
暗号通貨市場の特徴を高周波で分析・提示する。
私たちは、Bitcoinと米ドルのライブ為替レートの中間価格運動の予測について、一貫した78%の精度を達成しました。
論文 参考訳(メタデータ) (2020-02-09T20:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。