Reinforcement Learning for Personalized Drug Discovery and Design for
Complex Diseases: A Systems Pharmacology Perspective
- URL: http://arxiv.org/abs/2201.08894v1
- Date: Fri, 21 Jan 2022 21:29:46 GMT
- Title: Reinforcement Learning for Personalized Drug Discovery and Design for
Complex Diseases: A Systems Pharmacology Perspective
- Authors: Ryan K. Tan, Yang Liu, Lei Xie
- Abstract summary: We review the potential of reinforcement learning in systems pharmacology-oriented drug discovery and design.
New reinforcement learning techniques are needed to boost generalizability and transferability of reinforcement learning.
- Score: 13.103056213998213
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many multi-genic systematic diseases such as Alzheimer's disease and majority
of cancers do not have effective treatments yet. Systems pharmacology is a
potentially effective approach to designing personalized therapies for
untreatable complexed diseases. In this article, we review the potential of
reinforcement learning in systems pharmacology-oriented drug discovery and
design. In spite of successful application of advanced reinforcement learning
techniques to target-based drug discovery, new reinforcement learning
techniques are needed to boost generalizability and transferability of
reinforcement learning in partially observed and changing environments,
optimize multi-objective reward functions for system-level molecular phenotype
readouts and generalize predictive models for out-of-distribution data. A
synergistic integration of reinforcement learning with other machine learning
techniques and related fields such as biophysics and quantum computing is
needed to achieve the ultimate goal of systems pharmacology-oriented de novo
drug design for personalized medicine.
Related papers
- Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncology [8.802214988309684]
We introduce a hierarchical attention structure to leverage shared and complementary features of both modalities of histology and genomics.
Our method surpasses previous state-of-the-art approaches in glioma diagnosis and prognosis tasks.
arXiv Detail & Related papers (2024-06-11T09:06:41Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
We develop a versatile 'plug-in' molecular generation model that incorporates objectives related to target affinity, drug-likeness, and synthesizability.
We identify PSO-ENP as the optimal variant for multi-objective molecular generation and optimization.
arXiv Detail & Related papers (2024-04-10T02:37:24Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data.
Recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery.
arXiv Detail & Related papers (2023-02-16T12:38:01Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities [18.434430658837258]
We have witnessed a rapid expansion of representation learning techniques into modeling, analysis, and learning with networks.
In this review, we put forward an observation that long-standing principles of network biology and medicine can provide the conceptual grounding for representation learning.
We synthesize a spectrum of algorithmic approaches that leverage topological features to embed networks into compact vector spaces.
arXiv Detail & Related papers (2021-04-11T00:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.