論文の概要: Hamiltonian-based neural networks for systems under nonholonomic constraints
- arxiv url: http://arxiv.org/abs/2412.03018v1
- Date: Wed, 04 Dec 2024 04:08:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:46.155365
- Title: Hamiltonian-based neural networks for systems under nonholonomic constraints
- Title(参考訳): 非ホロノミック制約下におけるシステムに対するハミルトン型ニューラルネットワーク
- Authors: Ignacio Puiggros T., A. Srikantha Phani,
- Abstract要約: 非ホロノミック制約下でハミルトニアン系をモデル化できる改良型ハミルトニアンニューラルネットワークアーキテクチャを開発した。
システムのハミルトニアン,制約,および関連する乗算器を同時に学習するために,3ネットワーク並列アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: There has been increasing interest in methodologies that incorporate physics priors into neural network architectures to enhance their modeling capabilities. A family of these methodologies that has gained traction are Hamiltonian neural networks (HNN) and their variations. These architectures explicitly encode Hamiltonian mechanics both in their structure and loss function. Although Hamiltonian systems under nonholonomic constraints are in general not Hamiltonian, it is possible to formulate them in pseudo-Hamiltonian form, equipped with a Lie bracket which is almost Poisson. This opens the possibility of using some principles of HNNs in systems under nonholonomic constraints. The goal of the present work is to develop a modified Hamiltonian neural network architecture capable of modeling Hamiltonian systems under holonomic and nonholonomic constraints. A three-network parallel architecture is proposed to simultaneously learn the Hamiltonian of the system, the constraints, and their associated multipliers. A rolling disk and a ball on a spinning table are considered as canonical examples to assess the performance of the proposed Hamiltonian architecture. The experiments are then repeated with a noisy training set to study modeling performance under more realistic conditions.
- Abstract(参考訳): モデリング能力を高めるために、物理学の先行概念をニューラルネットワークアーキテクチャに組み込む方法論への関心が高まっている。
これらの手法の1つがハミルトンニューラルネットワーク(HNN)とそのバリエーションである。
これらのアーキテクチャは、ハミルトン力学をその構造と損失関数の両方において明示的にエンコードする。
非ホロノミック制約下のハミルトン系は一般にハミルトン系ではないが、ほとんどポアソンのリーブラケットを備えた擬ハミルトン形式で定式化することができる。
これは、非ホロノミック制約の下でシステムにHNNのいくつかの原則を使用する可能性を開く。
本研究の目的は、ホロノミックおよび非ホロノミック制約下でハミルトン系をモデル化できる修正ハミルトンニューラルネットワークアーキテクチャを開発することである。
システムのハミルトニアン,制約,および関連する乗算器を同時に学習するために,3ネットワーク並列アーキテクチャを提案する。
回転台上の回転円盤と球は、提案したハミルトン建築の性能を評価するための標準例として考えられる。
実験は、より現実的な条件下でのモデリング性能を研究するために、ノイズの多いトレーニングセットで繰り返される。
関連論文リスト
- Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
ハミルトン系は、保守的であり、すなわちエネルギーは進化を通して保存されるという重要な性質を持っている。
特にハミルトニアンニューラルネットワークは、構造的帰納バイアスをNNモデルに組み込むメカニズムとして登場した。
共振器のスキームはノイズに対して頑健であり,ノイズ観測から状態変数がサンプリングされた場合のハミルトニアン系の近似が良好であることを示す。
論文 参考訳(メタデータ) (2024-09-17T12:45:49Z) - Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models [30.746062388701187]
本稿では,統合ニューラルネットワークアーキテクチャ,Deep Equilibrium Density Functional Theory Hamiltonian (DEQH)モデルを紹介する。
DEQHモデルは本質的にハミルトニアンの自己整合性の性質を捉えている。
本稿では,DECと既製の機械学習モデルを組み合わせた多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T07:05:58Z) - Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation [55.227976642410766]
グラフ内の情報拡散のダイナミクスは、グラフ表現学習に大きな影響を及ぼす重要なオープン問題である。
そこで我々は(ポート-)Hamiltonian Deep Graph Networksを紹介した。
我々は,非散逸的長距離伝播と非保守的行動の両方を,単一の理論的・実践的な枠組みで調整する。
論文 参考訳(メタデータ) (2024-05-27T13:36:50Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
本稿では,既存のハミルトンニューラルネットワーク構造を適応型シンプレクティックリカレントニューラルネットワークに組み合わせたアーキテクチャを提案する。
このアーキテクチャは、ハミルトニアン力学を予測する際に、これまで提案されていたニューラルネットワークよりも大幅に優れていた。
本手法は, 単一パラメータポテンシャルに対して有効であり, 長期間にわたって正確な予測を行うことができることを示す。
論文 参考訳(メタデータ) (2023-07-22T19:04:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Port-Hamiltonian Neural Networks with State Dependent Ports [58.720142291102135]
本手法は,数個の内力および外力を持つ単純な質量スプリングシステムと,より複雑で現実的なシステムの両方において,ストレス試験を行う。
ポート-ハミルトンニューラルネットワークは、状態依存型ポートでより大きな次元に拡張することができる。
スパースデータとノイズデータのトレーニングを改善するための対称高次積分器を提案する。
論文 参考訳(メタデータ) (2022-06-06T14:57:25Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
from Vision [73.26414295633846]
最近提案されたモデルのクラスは、高次元観測から潜在力学を学習しようと試みている。
既存の手法は画像再構成の品質に依存しており、学習した潜在力学の質を常に反映しているわけではない。
我々は、基礎となるハミルトン力学が忠実に捕獲されたかどうかのバイナリ指標を含む、一連の新しい尺度を開発する。
論文 参考訳(メタデータ) (2021-11-10T23:26:58Z) - Symplectic Learning for Hamiltonian Neural Networks [0.0]
Hamiltonian Neural Networks (HNN)は、統一された"グレーボックス"アプローチに向けた第一歩を踏み出した。
損失関数が異なるハミルトン系のシンプレクティック構造を利用する。
HNNが学習できる正確なハミルトン関数の存在を数学的に保証する。
論文 参考訳(メタデータ) (2021-06-22T13:33:12Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
我々は、新しいニューラルネットワークアーキテクチャ、非分離型シンプレクティックニューラルネットワーク(NSSNN)を提案する。
NSSNNは、限られた観測データから非分離ハミルトン系のシンプレクティック構造を発見し、埋め込む。
大規模ハミルトニアン系に対する長期的、正確で、堅牢な予測を得るためのアプローチの独特な計算上の利点を示す。
論文 参考訳(メタデータ) (2020-10-23T19:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。