論文の概要: Compliance Challenges in Forensic Image Analysis Under the Artificial
Intelligence Act
- arxiv url: http://arxiv.org/abs/2203.00469v1
- Date: Tue, 1 Mar 2022 14:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 13:49:20.476731
- Title: Compliance Challenges in Forensic Image Analysis Under the Artificial
Intelligence Act
- Title(参考訳): 人工知能法における法医学的画像解析のコンプライアンス問題
- Authors: Benedikt Lorch, Nicole Scheler, Christian Riess
- Abstract要約: 法医学的画像解析における機械学習の利用が、なぜハイリスクに分類されるのかを概観する。
ドラフトAI法の下では、法執行機関で使用されるリスクの高いAIシステムは許可されるが、必須要件に従わなければならない。
- 参考スコア(独自算出の注目度): 8.890638003061605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications of forensic image analysis, state-of-the-art results are
nowadays achieved with machine learning methods. However, concerns about their
reliability and opaqueness raise the question whether such methods can be used
in criminal investigations. So far, this question of legal compliance has
hardly been discussed, also because legal regulations for machine learning
methods were not defined explicitly. To this end, the European Commission
recently proposed the artificial intelligence (AI) act, a regulatory framework
for the trustworthy use of AI. Under the draft AI act, high-risk AI systems for
use in law enforcement are permitted but subject to compliance with mandatory
requirements. In this paper, we review why the use of machine learning in
forensic image analysis is classified as high-risk. We then summarize the
mandatory requirements for high-risk AI systems and discuss these requirements
in light of two forensic applications, license plate recognition and deep fake
detection. The goal of this paper is to raise awareness of the upcoming legal
requirements and to point out avenues for future research.
- Abstract(参考訳): 法医学的画像解析の多くの応用において、現在最先端の成果は機械学習手法によって達成されている。
しかし、その信頼性や不透明性に対する懸念は、そのような方法が刑事捜査に利用できるかどうかという疑問を提起する。
機械学習手法の法的規制は明確に定義されていなかったため、これまでのところ法的なコンプライアンスの問題はほとんど議論されていない。
この目的のために、欧州委員会は最近、信頼できるAIの使用のための規制フレームワークである人工知能(AI)法を提案した。
ドラフトAI法の下では、法執行機関で使用されるリスクの高いAIシステムは許可されるが、必須要件に従わなければならない。
本稿では,法医学的画像解析における機械学習の利用が高リスクに分類される理由を概説する。
次に,高リスクaiシステムの要求要件を要約し,ライセンスプレート認識とディープフェイク検出という2つの法医学的応用の観点から,これらの要件について議論する。
本稿の目的は,今後の法的要件に対する意識を高め,今後の研究への道筋を示すことにある。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception [4.075971633195745]
ディープニューラルネットワーク(DNN)は、自動運転車の知覚機能の中心となっている。
EU(EU)人工知能(AI)法は、AIシステムの厳格な規範と標準を確立することによって、これらの課題に対処することを目的としている。
本稿では、DNNに基づく知覚システムに関するEU AI法から生じる要件を要約し、ADにおける既存の生成AIアプリケーションを体系的に分類する。
論文 参考訳(メタデータ) (2024-08-30T12:01:06Z) - An FDA for AI? Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence [0.0]
我々は、フロンティアAIの規制に対する承認規制、すなわち、実験的なミニマと、その実験で部分的にまたは完全に条件付けられた政府のライセンスとを組み合わせた製品の適用性について検討する。
承認規制が単に適用されたとしても、フロンティアAIのリスクには不適当であると考える理由はいくつかある。
規制開発における政策学習と実験の役割を強調して締めくくる。
論文 参考訳(メタデータ) (2024-08-01T17:54:57Z) - Operationalizing the Blueprint for an AI Bill of Rights: Recommendations for Practitioners, Researchers, and Policy Makers [20.16404495546234]
世界の様々な国でいくつかの規制の枠組みが導入されている。
これらのフレームワークの多くは、AIツールの監査と信頼性向上の必要性を強調している。
これらの規制の枠組みは実施の必要性を強調しているが、実践者はしばしば実施に関する詳細なガイダンスを欠いている。
我々は、最先端の文献の分かりやすい要約を提供し、規制ガイドラインと既存のAI研究の間に存在する様々なギャップを強調します。
論文 参考訳(メタデータ) (2024-07-11T17:28:07Z) - AI Cards: Towards an Applied Framework for Machine-Readable AI and Risk Documentation Inspired by the EU AI Act [2.1897070577406734]
その重要性にもかかわらず、AI法に沿ったAIとリスクドキュメントの作成を支援するための標準やガイドラインが欠如している。
提案するAIカードは,AIシステムの意図した使用を表現するための,新しい総合的なフレームワークである。
論文 参考訳(メタデータ) (2024-06-26T09:51:49Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Authorized and Unauthorized Practices of Law: The Role of Autonomous
Levels of AI Legal Reasoning [0.0]
法分野は、認可された法律実務(APL)と無認可の法律実務(UPL)を定義することを目指している。
本稿では,AILR自律レベルに適用する上で,APLとUPLの基盤となる重要な特徴を記述した新たなインスツルメンタルグリッドについて検討する。
論文 参考訳(メタデータ) (2020-08-19T18:35:58Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。