Single-shot quantum measurements sketch quantum many-body states
- URL: http://arxiv.org/abs/2203.01348v4
- Date: Thu, 6 Apr 2023 03:52:06 GMT
- Title: Single-shot quantum measurements sketch quantum many-body states
- Authors: Jia-Bao Wang, Yi Zhang
- Abstract summary: We propose a nonlinear "measurement energy" based upon the measurement outcomes and an iterative effective-Hamiltonian approach to extract the most probable states.
Our study paves the way towards concepts such as nonlinear-operator Hamiltonian and applications such as parent Hamiltonian reconstruction.
- Score: 7.89342891351528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum measurements are our eyes to the quantum systems consisting of a
multitude of microscopic degrees of freedom. However, the intrinsic uncertainty
of quantum measurements and the exponentially large Hilbert space pose natural
barriers to simple interpretations of the measurement outcomes. We propose a
nonlinear "measurement energy" based upon the measurement outcomes and an
iterative effective-Hamiltonian approach to extract the most probable states
(maximum likelihood estimates) in an efficient and general fashion, thus
reconciling the non-commuting observables and getting more out of the quantum
measurements. We showcase the versatility and accuracy of our perspective on
random long-range fermion models and Kitaev quantum spin liquid models, where
smoking-gun signatures were lacking. Our study also paves the way towards
concepts such as nonlinear-operator Hamiltonian and applications such as parent
Hamiltonian reconstruction.
Related papers
- Entanglement measurement based on convex hull properties [0.0]
We will propose a scheme for measuring quantum entanglement, which starts with treating the set of quantum separable states as a convex hull of quantum separable pure states.
Although a large amount of data is required in the measurement process, this method is not only applicable to 2-qubit quantum states, but also a entanglement measurement method that can be applied to any dimension and any fragment.
arXiv Detail & Related papers (2024-11-08T08:03:35Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum measurements and equilibration: the emergence of objective
reality via entropy maximisation [0.0]
We formalise the hypothesis that quantum measurements are driven by the natural tendency of closed systems to maximize entropy.
We lay the groundwork for self-contained models of quantum measurement, proposing improvements to our simple scheme.
arXiv Detail & Related papers (2023-02-22T10:06:17Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.