Autofocusing+: Noise-Resilient Motion Correction in Magnetic Resonance
Imaging
- URL: http://arxiv.org/abs/2203.05569v1
- Date: Thu, 10 Mar 2022 12:49:29 GMT
- Title: Autofocusing+: Noise-Resilient Motion Correction in Magnetic Resonance
Imaging
- Authors: Ekaterina Kuzmina, Artem Razumov, Oleg Y. Rogov, Elfar Adalsteinsson,
Jacob White, Dmitry V. Dylov
- Abstract summary: We propose a neural network-based regularization term to enhance Autofocusing, a classic optimization-based method to remove motion artifacts.
The method takes the best of both worlds: the optimization-based routine iteratively executes the blind demotion and deep learning-based prior penalizes for unrealistic restorations and speeds up the convergence.
- Score: 1.7277957019593995
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image corruption by motion artifacts is an ingrained problem in Magnetic
Resonance Imaging (MRI). In this work, we propose a neural network-based
regularization term to enhance Autofocusing, a classic optimization-based
method to remove motion artifacts. The method takes the best of both worlds:
the optimization-based routine iteratively executes the blind demotion and deep
learning-based prior penalizes for unrealistic restorations and speeds up the
convergence. We validate the method on three models of motion trajectories,
using synthetic and real noisy data. The method proves resilient to noise and
anatomic structure variation, outperforming the state-of-the-art demotion
methods.
Related papers
- Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.
We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI [24.048132427816704]
We propose a deep learning-based test-time-training method for accurate motion estimation.
We show that our method can provably reconstruct motion parameters for a simple signal and neural network model.
arXiv Detail & Related papers (2024-09-14T08:51:33Z) - IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations [2.2265038612930663]
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times.
Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results.
We present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs)
Our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
arXiv Detail & Related papers (2024-07-03T10:14:33Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - Iterative Learning for Joint Image Denoising and Motion Artifact
Correction of 3D Brain MRI [11.806804196128953]
We propose a Joint image Denoising and motion Artifact Correction (JDAC) framework via iterative learning to handle noisy MRIs with motion artifacts.
We first design a novel noise level estimation strategy, and then adaptively reduce the noise through a U-Net backbone with feature normalization conditioning on the estimated noise variance.
The anti-artifact model employs another U-Net for eliminating motion artifacts, incorporating a novel gradient-based loss function designed to maintain the integrity of brain anatomy during the motion correction process.
arXiv Detail & Related papers (2024-03-13T01:18:55Z) - RoHM: Robust Human Motion Reconstruction via Diffusion [58.63706638272891]
RoHM is an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos.
It conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates.
Our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time.
arXiv Detail & Related papers (2024-01-16T18:57:50Z) - Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis [0.0]
This dissertation aims to provide advanced nonsmooth variational models (Magnetic Resonance Image) MRI reconstruction, efficient learnable image reconstruction algorithms, and deep learning methods for MRI reconstruction and synthesis.
The first part introduces a novel based deep neural network whose architecture is inspired by proximal gradient descent for a variational model.
The second part is a substantial extension of the preliminary work in the first part by solving the calibration-free fast pMRI reconstruction problem in a discrete-time optimal framework.
The third part aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the metalearning framework.
arXiv Detail & Related papers (2023-03-02T18:59:44Z) - Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction [37.41561581618164]
Motion artifact reduction is one of the important research topics in MR imaging.
We present an annealed score-based diffusion model for MRI motion artifact reduction.
Experimental results verify that the proposed method successfully reduces both simulated and in vivo motion artifacts.
arXiv Detail & Related papers (2023-01-08T12:16:08Z) - Robust Dynamic Radiance Fields [79.43526586134163]
Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene.
Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms.
We address this robustness issue by jointly estimating the static and dynamic radiance fields along with the camera parameters.
arXiv Detail & Related papers (2023-01-05T18:59:51Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.