論文の概要: Emerging Artificial Intelligence Applications in Spatial Transcriptomics
Analysis
- arxiv url: http://arxiv.org/abs/2203.09664v1
- Date: Fri, 18 Mar 2022 00:21:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 05:04:06.747573
- Title: Emerging Artificial Intelligence Applications in Spatial Transcriptomics
Analysis
- Title(参考訳): 空間トラノドミクス解析における新しい人工知能応用
- Authors: Yijun Li, Stefan Stanojevic, Lana X. Garmire
- Abstract要約: 多くの人工知能(AI)手法が、様々な機械学習および深層学習技術を用いて計算ST分析に利用するために開発されている。
このレビューは、ST分析の現在のAIメソッドに関する包括的で最新の調査を提供する。
- 参考スコア(独自算出の注目度): 12.694772761397088
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Spatial transcriptomics (ST) has advanced significantly in the last few
years. Such advancement comes with the urgent need for novel computational
methods to handle the unique challenges of ST data analysis. Many artificial
intelligence (AI) methods have been developed to utilize various machine
learning and deep learning techniques for computational ST analysis. This
review provides a comprehensive and up-to-date survey of current AI methods for
ST analysis.
- Abstract(参考訳): 空間転写学(ST)は近年大きく進歩している。
このような進歩は、STデータ分析の独特な課題に対処する新しい計算手法が緊急に必要となる。
多くの人工知能(AI)手法が、様々な機械学習およびディープラーニング技術を利用して計算ST分析を行っている。
このレビューは、ST分析の現在のAIメソッドに関する包括的で最新の調査を提供する。
関連論文リスト
- Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
心肺蘇生(CPR)における機械学習(ML)と人工知能(AI)の変革的役割について検討する。
再現結果を改善する上で、予測モデリング、AI強化デバイス、リアルタイムデータ分析の影響を強調している。
本稿は、この新興分野における現在の応用、課題、今後の方向性に関する包括的概要、分類、および批判的分析を提供する。
論文 参考訳(メタデータ) (2024-11-03T18:01:50Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
論文 参考訳(メタデータ) (2024-01-13T19:12:49Z) - A Deep Dive into Perturbations as Evaluation Technique for Time Series
XAI [13.269396832189754]
時系列データのためのXAIは、金融、医療、気候科学においてますます重要になっている。
XAI技術による属性などの説明の質を評価することは依然として困難である。
本稿では,時系列モデルから抽出した属性を評価するために摂動を用いた詳細な解析を行う。
論文 参考訳(メタデータ) (2023-07-11T08:26:08Z) - Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions [2.35574869517894]
本研究は、MXAI(Multimodal XAI)領域における最近の進歩の分析に焦点をあてる。
MXAIは、主予測と説明タスクに複数のモダリティを含む手法から構成される。
論文 参考訳(メタデータ) (2023-06-09T07:51:50Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Future Artificial Intelligence tools and perspectives in medicine [1.7532045941271799]
現在、がんの限られた管理は人工知能の恩恵を受けており、主にコンピューター支援診断に関連しており、追加のリスクとコストを示す生検分析を避けている。
本稿では,臨床応用のためのAIベースの放射線治療ツールの進歩について概説する。
論文 参考訳(メタデータ) (2022-06-04T11:27:43Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。