Quantum coherence versus interferometric visibility in a biased
Mach-Zehnder interferometer
- URL: http://arxiv.org/abs/2203.17062v3
- Date: Fri, 27 Jan 2023 16:13:07 GMT
- Title: Quantum coherence versus interferometric visibility in a biased
Mach-Zehnder interferometer
- Authors: Diego S. S. Chrysosthemos, Marcos L. W. Basso and Jonas Maziero
- Abstract summary: Mach-Zehnder interferometer (MZI) with balanced beam splitters are prototypical setups for investigating the quantum wave-particle duality.
We show that in some cases the IVI is not adequate to quantify the WAQ since it does not reflect the behavior of the quantum coherence.
We experimentally verify our theoretical findings by doing a full quantum simulation of the optical MZI with biased beam splitters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The double-slit interferometer and the Mach-Zehnder interferometer (MZI) with
balanced beam splitters are prototypical setups for investigating the quantum
wave-particle duality. These setups induced a quantitative association of
interferometric visibility (IVI) with the wave aspect of a single quantum
system (WAQ). Recently, it was realized that quantum coherence (QC) can be
better suited than IVI for quantifying the WAQ in complementarity relations. In
this article, we investigate a MZI with biased beam splitters both in the input
and the output, and we show that in some cases the IVI is not adequate to
quantify the WAQ since it does not reflect the behavior of the quantum
coherence, even for a bi-dimensional closed quantum system. Using IBM quantum
computers, we experimentally verify our theoretical findings by doing a full
quantum simulation of the optical MZI with biased beam splitters.
Related papers
- Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Creating mirror-mirror quantum correlations in optomechanics [0.0]
We study the transfer of quantum correlations between two movable mirrors of two Fabry-P'erot cavities separated via broadband squeezed light and coupled via photon hopping process.
arXiv Detail & Related papers (2023-08-11T02:38:26Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Coherently excited Hong-Ou-Mandel effects using frequency-path
correlation [0.0]
The Hong-Ou-Mandel (HOM) effect relates to the two-photon intensity correlation on a beam splitter, resulting in a nonclassical photon-bunching phenomenon.
Here, a coherence version of the HOM effect is proposed and analyzed to understand the fundamental physics of the anticorrelation and entanglement.
arXiv Detail & Related papers (2022-04-04T23:55:22Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum non-demolition measurement based on an
SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer [0.5249805590164902]
Quantum non-demolition (QND) measurement is an important tool in the field of quantum information processing and quantum optics.
In this paper, we present an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer, and theoretically study the QND measurement of photon number.
arXiv Detail & Related papers (2021-05-29T05:03:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Simulation of wave-particle duality in multi-path interferometers on a
quantum computer [0.0]
We present an architecture to investigate wave-particle duality in $N$-path interferometers on a universal quantum computer involving as low as $2log N$ qubits.
We implement our algorithms for interferometers with up to $N=16$ paths in proof-of-principle experiments on a noisy intermediate-scale quantum device.
arXiv Detail & Related papers (2020-09-09T07:37:18Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.