論文の概要: From Rewriting to Remembering: Common Ground for Conversational QA
Models
- arxiv url: http://arxiv.org/abs/2204.03930v1
- Date: Fri, 8 Apr 2022 08:52:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-11 17:18:39.495685
- Title: From Rewriting to Remembering: Common Ground for Conversational QA
Models
- Title(参考訳): 書き直しから思い出へ:会話型QAモデルのための共通基盤
- Authors: Marco Del Tredici, Xiaoyu Shen, Gianni Barlacchi, Bill Byrne, Adri\`a
de Gispert
- Abstract要約: 会話情報を蓄積する手法として,コモン・グラウンド (CG) を導入する。
CGは,既存のアプローチに比べて,会話情報を活用するための,より効率的で人間的な方法を提供することを示す。
- 参考スコア(独自算出の注目度): 20.68756723514823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In conversational QA, models have to leverage information in previous turns
to answer upcoming questions. Current approaches, such as Question Rewriting,
struggle to extract relevant information as the conversation unwinds. We
introduce the Common Ground (CG), an approach to accumulate conversational
information as it emerges and select the relevant information at every turn. We
show that CG offers a more efficient and human-like way to exploit
conversational information compared to existing approaches, leading to
improvements on Open Domain Conversational QA.
- Abstract(参考訳): 会話型QAでは、モデルは次の質問に答えるために、以前の順番で情報を活用する必要がある。
現在のアプローチ、例えば質問の書き直しは、会話が揺れるにつれて関連する情報を抽出するのに苦労している。
我々は,会話情報を蓄積する手法である共通グラウンド(CG)を導入し,各ターンに関連情報を選択する。
CGは、既存のアプローチに比べて、より効率的で人間的な方法で会話情報を活用できることを示し、Open Domain Conversational QAの改善につながっている。
関連論文リスト
- Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
本稿では,対話型質問応答のための細粒度検索と自己チェックを組み込んだ対話レベルのRAG手法を提案する。
特に,本手法は,対話型質問精算器,きめ細かい検索器,自己チェックに基づく応答生成器の3つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-03-27T04:20:18Z) - History-Aware Conversational Dense Retrieval [31.203399110612388]
本稿では,コンテキスト依存型クエリ再構成と監視信号の自動マイニングという2つのアイデアを取り入れた,履歴認識型会話用Dense Retrieval(HAConvDR)システムを提案する。
2つの公開対話型検索データセットの実験は、HAConvDRの履歴モデリング機能の改善を実証している。
論文 参考訳(メタデータ) (2024-01-30T01:24:18Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - BERT-CoQAC: BERT-based Conversational Question Answering in Context [10.811729691130349]
履歴変換をシステム内に組み込むためのBERTという,パブリックに利用可能なプリトレーニング言語モデルに基づくフレームワークを紹介する。
実験の結果,我々のフレームワークはQuACリーダボードの最先端モデルと同等の性能を示した。
論文 参考訳(メタデータ) (2021-04-23T03:05:17Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
本稿では,会話のターン間の回答間の関係をモデル化するグラフ誘導検索手法を提案する。
また,検索コンテキストが現在の質問理解に与える影響を検討するために,マルチラウンド関連フィードバック手法を導入することを提案する。
論文 参考訳(メタデータ) (2021-04-17T04:39:41Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
音声対話型質問応答タスク(SCQA)を提案する。
SCQAは,音声発話とテキストコーパスから複雑な対話の流れをモデル化することを目的としている。
我々の主な目的は、音声とテキストの両方で会話的な質問に対処するQAシステムを構築することである。
論文 参考訳(メタデータ) (2020-10-18T05:53:39Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
知識ベース(KB)に対する質問回答(QA)は、自然言語の質問に自動的に答えることを目的としている。
研究者は、よりKBのトリプルと制約推論を必要とする単純な質問から複雑な質問へと注意を移した。
論文 参考訳(メタデータ) (2020-07-26T07:13:32Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。