論文の概要: An improved central limit theorem and fast convergence rates for
entropic transportation costs
- arxiv url: http://arxiv.org/abs/2204.09105v1
- Date: Tue, 19 Apr 2022 19:26:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 02:31:38.912075
- Title: An improved central limit theorem and fast convergence rates for
entropic transportation costs
- Title(参考訳): エントロピー輸送コストに対する改良された中心極限定理と高速収束率
- Authors: Eustasio del Barrio and Alberto Gonzalez-Sanz and Jean-Michel Loubes
and Jonathan Niles-Weed
- Abstract要約: 亜ガウス確率測度間のエントロピー輸送コストに対する中心極限定理を証明した。
これらの結果を,実証的尺度間の期待エントロピー輸送コストに対する,新しい,より高速な,収束率で補完する。
- 参考スコア(独自算出の注目度): 13.9170193921377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove a central limit theorem for the entropic transportation cost between
subgaussian probability measures, centered at the population cost. This is the
first result which allows for asymptotically valid inference for entropic
optimal transport between measures which are not necessarily discrete. In the
compactly supported case, we complement these results with new, faster,
convergence rates for the expected entropic transportation cost between
empirical measures. Our proof is based on strengthening convergence results for
dual solutions to the entropic optimal transport problem.
- Abstract(参考訳): 我々は,人口コストに着目したサブガウシアン確率測度間のエントロピー輸送コストの中央極限定理を証明した。
これは必ずしも離散ではない測度間のエントロピー的最適輸送に対する漸近的に有効な推論を可能にする最初の結果である。
コンパクトに支持されたケースでは,これらの結果を,経験的尺度間で期待されるエントロピー輸送コストに対する新しい,より高速な収束率で補完する。
我々の証明は、エントロピー最適輸送問題に対する双対解の収束結果の強化に基づいている。
関連論文リスト
- Conditional Optimal Transport on Function Spaces [53.9025059364831]
ブロック三角形モンジュ写像を記述した制約付き最適輸送問題の理論を開発する。
これは、一般的なコスト関数を持つ分離可能な無限次元函数空間への最適三角輸送の理論を一般化する。
本稿では,機能パラメータの非道徳的および可能性のない推論に対する理論的結果の計算的適用性を示す数値実験を行う。
論文 参考訳(メタデータ) (2023-11-09T18:44:42Z) - New Perspectives on Regularization and Computation in Optimal
Transport-Based Distributionally Robust Optimization [8.564319625930892]
本研究では, 有限の輸送コストで所定の基準分布による不確実な問題パラメータの分布を選択することができるような, 最適輸送に基づく分布安定度最適化問題について検討する。
論文 参考訳(メタデータ) (2023-03-07T13:52:32Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Convergence Rates for Regularized Optimal Transport via Quantization [3.04585143845864]
正規化パラメータが消滅するにつれて, 分散正則化最適輸送の収束について検討する。
量子化とマーチンゲール結合を用いた新しい手法は、非コンパクトなマーチンゲールに適している。
論文 参考訳(メタデータ) (2022-08-30T16:58:40Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal
Transport [0.483420384410068]
エントロピー半離散的最適輸送の解に対して、ほぼ厳密で非漸近収束境界を導出する。
また, エントロピーと非正規化コストの差を非漸近的かつ厳密に拡大させることも検討した。
論文 参考訳(メタデータ) (2021-10-25T06:52:45Z) - Estimation of Stationary Optimal Transport Plans [4.662321040754878]
有限値量が定常的に時間とともに動的に進化する最適輸送問題について検討する。
最適接合と最適接合コストの両方を推定する。
最適接合問題のエントロピーペナル化版に一貫性と速度解析を拡張した。
論文 参考訳(メタデータ) (2021-07-25T17:46:21Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
自由フェルミオン系のクエンチダイナミクスについて検討する。
特に,入力として定常電流の値をとり,出力として相関値を与えるEmphtransition Mapをダブする関数を同定する。
論文 参考訳(メタデータ) (2021-03-24T17:47:53Z) - Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
Solution [8.465228064780748]
2つの点でサポートされる離散確率測度の間のWasserstein距離の計算が既に#P-hardであることを証明します。
目的関数が最も悪質な外乱分布で滑らかになる分布的に頑健な双対最適輸送問題を導入する。
双対目的関数の平滑化は主目的関数の正則化と等価であることを示す。
論文 参考訳(メタデータ) (2021-03-10T18:53:59Z) - Finite Sample Analysis of Minimax Offline Reinforcement Learning:
Completeness, Fast Rates and First-Order Efficiency [83.02999769628593]
強化学習におけるオフ・ポリティィ・アセスメント(OPE)の理論的特徴について述べる。
ミニマックス法により、重みと品質関数の高速収束を実現することができることを示す。
非タブラル環境における1次効率を持つ最初の有限サンプル結果を示す。
論文 参考訳(メタデータ) (2021-02-05T03:20:39Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。