論文の概要: Accelerating Machine Learning via the Weber-Fechner Law
- arxiv url: http://arxiv.org/abs/2204.11834v1
- Date: Thu, 21 Apr 2022 10:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-01 08:51:25.141135
- Title: Accelerating Machine Learning via the Weber-Fechner Law
- Title(参考訳): Weber-Fechner法則による機械学習の高速化
- Authors: B.N. Kausik
- Abstract要約: 我々は、人間の概念の学習アルゴリズムは、Weber-Fechner法から恩恵を受けることができると主張している。
我々は、Weber-Fechnerを、ソートされた出力の対数パワー系列を介して、畳み込みの有無にかかわらず、単純なニューラルネットワークに課す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Weber-Fechner Law observes that human perception scales as the logarithm
of the stimulus. We argue that learning algorithms for human concepts could
benefit from the Weber-Fechner Law. Specifically, we impose Weber-Fechner on
simple neural networks, with or without convolution, via the logarithmic power
series of their sorted output. Our experiments show surprising performance and
accuracy on the MNIST data set within a few training iterations and limited
computational resources, suggesting that Weber-Fechner can accelerate machine
learning of human concepts.
- Abstract(参考訳): ウェーバー=フェヒナーの法則では、人間の知覚は刺激の対数としてスケールする。
我々は、人間の概念の学習アルゴリズムは、Weber-Fechner法から恩恵を受けることができると主張している。
具体的には、Weber-Fechnerを、ソートされた出力の対数パワー系列を介して、畳み込みの有無にかかわらず、単純なニューラルネットワークに課す。
我々の実験は、数回のトレーニングイテレーションと限られた計算資源の中で、MNISTデータセットの驚くべき性能と精度を示し、Weber-Fechnerが人間の概念の機械学習を加速できることを示唆している。
関連論文リスト
- A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Psychophysical Machine Learning [0.0]
ウェバー・フェヒナー法は、人間の知覚が刺激の対数的であることを観察している。
本稿では,Weber Fechner法則を機械学習の損失関数に組み込むアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T23:57:40Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - The Physics of Machine Learning: An Intuitive Introduction for the
Physical Scientist [0.0]
この記事では、機械学習アルゴリズムに関する深い洞察を得たいと願う物理科学者を対象としている。
まず、エネルギーベースの2つの機械学習アルゴリズム、ホップフィールドネットワークとボルツマンマシンのレビューと、Isingモデルとの関係について述べる。
次に、フィードフォワードニューラルネットワーク、畳み込みニューラルネットワーク、オートエンコーダを含む、さらに"実践的"な機械学習アーキテクチャを掘り下げます。
論文 参考訳(メタデータ) (2021-11-27T15:12:42Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - xRAI: Explainable Representations through AI [10.345196226375455]
本稿では,ニューラルネットワークがトレーニングしたネットワークから学習すべき数学的関数の記号表現を抽出する手法を提案する。
このアプローチは、訓練されたネットワークの重みとバイアスを入力として受信し、ネットワークが直接シンボリック表現に変換できる学習すべき関数の数値表現を出力する、いわゆる解釈ネットワークを訓練するというアイデアに基づいています。
論文 参考訳(メタデータ) (2020-12-10T22:49:29Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - Finite Difference Neural Networks: Fast Prediction of Partial
Differential Equations [5.575293536755126]
データから偏微分方程式を学習するための新しいニューラルネットワークフレームワークである有限差分ニューラルネットワーク(FDNet)を提案する。
具体的には、トラジェクトリデータから基礎となる偏微分方程式を学習するために提案した有限差分ネットワークを設計する。
論文 参考訳(メタデータ) (2020-06-02T19:17:58Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
機械学習は、特にディープラーニングの形で、人工知能の最近の基本的な発展のほとんどを駆動している。
ディープラーニングは、オブジェクト/パターン認識、音声と自然言語処理、自動運転車、インテリジェントな自己診断ツール、自律ロボット、知識に富んだパーソナルアシスタント、監視といった分野に成功している。
本稿では、電力効率の高いインメモリコンピューティング、ディープラーニングアクセラレーター、スパイクニューラルネットワークの実装のための潜在的なソリューションとして、CMOSハードウェア技術、memristorsを超越した小説をレビューする。
論文 参考訳(メタデータ) (2020-04-30T16:49:03Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
グラフニューラルネットワーク(GNN)を用いた論理一般化の課題について検討する。
ベンチマークスイートであるGraphLogでは、学習アルゴリズムが異なる合成論理でルール誘導を実行する必要がある。
モデルが一般化し適応する能力は、トレーニング中に遭遇する論理規則の多様性によって強く決定される。
論文 参考訳(メタデータ) (2020-03-14T05:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。