論文の概要: Physics informed WNO
- arxiv url: http://arxiv.org/abs/2302.05925v1
- Date: Sun, 12 Feb 2023 14:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 17:49:10.293555
- Title: Physics informed WNO
- Title(参考訳): 物理情報WNO
- Authors: Navaneeth N and Tapas Tripura and Souvik Chakraborty
- Abstract要約: パラメトリック偏微分方程式(PDE)系の解演算子をラベル付きトレーニングデータなしで学習するための物理インフォームドウェーブレット演算子(WNO)を提案する。
このフレームワークの有効性は、工学と科学の様々な分野に関連する4つの非線形ニューラルネットワークで検証され、実証されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural operators are recognized as an effective tool for learning
solution operators of complex partial differential equations (PDEs). As
compared to laborious analytical and computational tools, a single neural
operator can predict solutions of PDEs for varying initial or boundary
conditions and different inputs. A recently proposed Wavelet Neural Operator
(WNO) is one such operator that harnesses the advantage of time-frequency
localization of wavelets to capture the manifolds in the spatial domain
effectively. While WNO has proven to be a promising method for operator
learning, the data-hungry nature of the framework is a major shortcoming. In
this work, we propose a physics-informed WNO for learning the solution
operators of families of parametric PDEs without labeled training data. The
efficacy of the framework is validated and illustrated with four nonlinear
spatiotemporal systems relevant to various fields of engineering and science.
- Abstract(参考訳): ディープニューラル演算子は、複素偏微分方程式(pdes)の解演算子を学習するための有効なツールとして認識される。
精巧な分析ツールや計算ツールと比較して、1つのニューラル演算子は、初期条件や境界条件の異なる入力に対するPDEの解を予測できる。
最近提案されたウェーブレットニューラル演算子(WNO)は、ウェーブレットの時間周波数の局所化を利用して空間領域の多様体を効果的に捕捉する演算子である。
WNOは演算子学習の有望な方法であることが証明されているが、フレームワークのデータ不足は大きな欠点である。
本研究では,パラメトリックPDEのファミリーの解演算子をラベル付きトレーニングデータなしで学習するための物理インフォームドWNOを提案する。
この枠組みの有効性は, 工学・科学の様々な分野に関連する4つの非線形時空間系を用いて検証し, 実証した。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-Informed Geometry-Aware Neural Operator [1.2430809884830318]
工学設計の問題は、可変PDEパラメータとドメイン幾何学の下でパラメトリック部分微分方程式(PDE)を解くことである。
近年、ニューラル演算子はPDE演算子を学習し、PDE解を素早く予測する。
我々はPDEパラメータとドメインジオメトリの両方を同時に一般化する新しい手法であるPhysical-Informed Geometry-Aware Neural Operator (PI-GANO)を導入する。
論文 参考訳(メタデータ) (2024-08-02T23:11:42Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
本研究では、パラメトリック偏微分方程式(PDE)に対する時間適応演算子学習への機械学習の適用について検討する。
我々の焦点は、PDEパラメータを表す追加入力を処理するために既存の演算子学習方法を拡張することである。
目標は、短期的なソリューションを正確に予測し、堅牢な長期統計を提供する統一的な学習アプローチを作ることだ。
論文 参考訳(メタデータ) (2024-02-14T18:12:42Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Waveformer for modelling dynamical systems [1.0878040851638]
動的システムの学習ソリューションを学習するための新しい演算子学習手法である「ウェーブフォーマ」を提案する。
提案した波形変換器はウェーブレット変換を利用して解場と変圧器の空間的マルチスケールな挙動を捉える。
本稿では,提案するWaveformerが解演算子を高精度に学習し,既存の最先端演算子学習アルゴリズムを最大1桁の精度で上回っていることを示す。
論文 参考訳(メタデータ) (2023-10-08T03:34:59Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。