論文の概要: A hybrid classical-quantum approach to speed-up Q-learning
- arxiv url: http://arxiv.org/abs/2205.07730v1
- Date: Mon, 16 May 2022 14:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-12 23:39:52.425107
- Title: A hybrid classical-quantum approach to speed-up Q-learning
- Title(参考訳): 古典量子ハイブリッドによるq-learningの高速化
- Authors: A. Sannia, A. Giordano, N. Lo Gullo, C. Mastroianni, F. Plastina
- Abstract要約: 本稿では,古典的量子ハイブリッド手法を導入し,学習エージェントの決定過程における2次的性能向上を実現する。
特に、量子ルーチンが記述され、量子レジスタ上にエンコードされ、強化学習セットでアクション選択を駆動する確率分布が記述される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a classical-quantum hybrid approach to computation, allowing for
a quadratic performance improvement in the decision process of a learning
agent. In particular, a quantum routine is described, which encodes on a
quantum register the probability distributions that drive action choices in a
reinforcement learning set-up. This routine can be employed by itself in
several other contexts where decisions are driven by probabilities. After
introducing the algorithm and formally evaluating its performance, in terms of
computational complexity and maximum approximation error, we discuss in detail
how to exploit it in the Q-learning context.
- Abstract(参考訳): 本稿では,古典量子ハイブリッドによる計算手法を導入し,学習エージェントの意思決定過程における2次性能向上を実現する。
特に量子ルーチンが記述され、量子レジスタ上にエンコードされ、強化学習セットでアクション選択を駆動する確率分布が記述される。
このルーチンは、確率によって意思決定が行われる他のいくつかのコンテキストで、それ自体で採用することができる。
計算複雑性と最大近似誤差の観点からアルゴリズムを導入し、その性能を正式に評価した後、q-learningコンテキストでそれを活用する方法を詳細に検討する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Approximate Optimization: A Computational Intelligence Perspective [1.756184965281354]
量子コンピューティングと変分量子アルゴリズム(VQA)を紹介する。
Farhiらによる量子近似最適化アルゴリズム(FarhiのQAOA)について説明する。
計算学習理論や遺伝的アルゴリズムなど,関連分野へのQAOAの関連性について論じる。
論文 参考訳(メタデータ) (2024-07-09T19:40:23Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
本稿では,変分量子近似スペクトルクラスタリング(VQASC)アルゴリズムを提案する。
VQASCは、伝統的に古典的な問題で必要とされるシステムサイズ、Nよりも少ないパラメータの最適化を必要とする。
合成と実世界の両方のデータセットから得られた数値結果について述べる。
論文 参考訳(メタデータ) (2023-09-08T17:54:42Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
このチュートリアルは変分量子アルゴリズムのクラスに関する数学的記述を提供する。
量子側および古典側におけるこれらのハイブリッドアルゴリズムの重要な側面を正確に紹介する。
我々はQAOAに特に注意を払って、そのアルゴリズムに関わる量子回路と、その可能な誘導関数によって満たされる特性を詳述した。
論文 参考訳(メタデータ) (2022-12-22T14:27:52Z) - Quantum Policy Gradient Algorithm with Optimized Action Decoding [1.3946033794136758]
動作選択に必要な古典的後処理を最適化するための,新しい品質指標を提案する。
この手法により,5キュービットのハードウェアデバイス上で,フルトレーニングルーチンの実行に成功した。
論文 参考訳(メタデータ) (2022-12-13T15:42:10Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
論文 参考訳(メタデータ) (2021-02-09T13:48:00Z) - Hybrid quantum variational algorithm for simulating open quantum systems
with near-term devices [0.0]
ハイブリッド量子古典(HQC)アルゴリズムは、古典的な計算資源によってサポートされている短期量子デバイスを使用できる。
オープンシステムのダイナミクスをシミュレートするために,効率的な変分最適化手法を用いたHQCアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-12T13:49:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。