論文の概要: Statistical inference as Green's functions
- arxiv url: http://arxiv.org/abs/2205.11366v1
- Date: Mon, 23 May 2022 14:51:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 02:08:17.504174
- Title: Statistical inference as Green's functions
- Title(参考訳): グリーン関数としての統計的推測
- Authors: Hyun Keun Lee, Chulan Kwon, and Yong Woon Kim
- Abstract要約: 統計的推論は、交換可能な二進確率変数の長い列に対して厳密な科学的記述を持つことを示す。
我々の発見は科学における規範的で基礎的な問題に対する答えであり、その重要性はあらゆる純粋で応用された分野において遠く及ばない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statistical inference from data is foundational task in science. Recently, it
receives growing attention for its central role in inference systems of primary
interest in data science, artificial intelligence, or machine learning.
However, the understanding of statistical inference itself is not that solid
while regarded as a matter of subjective choice or implemented in obscure ways.
We here show that statistical inference has rigorous scientific description for
long sequence of exchangeable binary random variables, the prototypal
stochasticity in theories and applications. A linear differential equation is
derived from the exchangeability, and it turns out that statistical inference
is given by the Green's functions. Our finding is the answer to the normative
and foundational issue in science, and its significance will be far-reaching in
all pure and applied fields.
- Abstract(参考訳): データからの統計的推測は科学の基本課題である。
近年,データサイエンスや人工知能,機械学習などに関心を持つ推論システムにおいて,その中心的な役割が注目されている。
しかし、統計的推論自体の理解は、主観的な選択やあいまいな方法で実施される問題と見なされる一方で、それほど堅実ではない。
ここで,統計推論は,交換可能な二項確率変数の長い列,理論と応用における原型的確率性に対して,厳密な科学的記述を持つことを示す。
線形微分方程式は交換可能性から導かれ、統計的推論はグリーン関数によって与えられることが判明した。
我々の発見は科学における規範的で基礎的な問題に対する答えであり、その重要性はあらゆる純粋で応用された分野において遠く及ばない。
関連論文リスト
- An Overview of Causal Inference using Kernel Embeddings [14.298666697532838]
カーネル埋め込みは、様々な統計的推論問題における確率測度を表現する強力なツールとして登場した。
主な課題は、因果関係を特定し、観測データから平均的な治療効果を推定することである。
論文 参考訳(メタデータ) (2024-10-30T07:23:34Z) - Estimation of mutual information via quantum kernel method [0.0]
相互情報(MI)の推定は,複数の確率変数間の関係を非線形相関で調査する上で重要な役割を担っている。
本稿では,量子カーネルを用いた相互情報推定手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T00:53:16Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
本稿では,データとモデル間の相互作用を実験的に解析する新しいツールであるインタラクションテンソルを紹介する。
これらの観測に基づいて,特徴学習のための概念的枠組みを提案する。
この枠組みの下では、一つの仮説に対する期待された精度と一対の仮説に対する合意はどちらも閉形式で導出することができる。
論文 参考訳(メタデータ) (2023-06-07T21:35:26Z) - Inferential Moments of Uncertain Multivariable Systems [0.0]
我々はベイズ確率の更新をランダムなプロセスとして扱い、推論モーメントと呼ばれる結合確率分布の固有量的特徴を明らかにする。
推論モーメントは、まだ取得されていない情報に応じて、事前分布がどのように更新されるかについての形状情報を定量化する。
情報理論の要素と推論理論の関連性を示す推論モーメントの観点から,相互情報の時系列展開を求める。
論文 参考訳(メタデータ) (2023-05-03T00:56:12Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - A Philosophy of Data [91.3755431537592]
我々は、統計計算に必要な基本特性から統計データの定義まで研究する。
我々は、有用なデータの必要性は、プロパティを根本的にユニークか等しく理解することを規則化する必要があると論じている。
データとデータ技術への依存度が高まるにつれて、この2つの特徴は現実の集合概念に影響を与えます。
論文 参考訳(メタデータ) (2020-04-15T14:47:24Z) - Causal Relational Learning [29.082088734252213]
因果的背景知識と仮定を捉えるために,CaRLという宣言型言語を提案する。
CaRLは、関係ドメインにおける複雑な介入の影響を因果関係と推論する基盤を提供する。
論文 参考訳(メタデータ) (2020-04-07T18:33:05Z) - On Geometry of Information Flow for Causal Inference [0.0]
本稿では, グラガー・コーサリティに関するノーベル賞受賞作品を含む情報の流れを考察する。
我々の主な貢献は、伝達エントロピーによって示される因果推論として情報フローの幾何学的解釈を可能にする分析ツールを開発することである。
論文 参考訳(メタデータ) (2020-02-06T02:46:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。