論文の概要: Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
- arxiv url: http://arxiv.org/abs/2205.12706v3
- Date: Mon, 16 Sep 2024 13:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 06:00:45.229387
- Title: Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
- Title(参考訳): オンライン変更検出のための指数窓における最大平均差
- Authors: Florian Kalinke, Marco Heyden, Georg Gntuni, Edouard Fouché, Klemens Böhm,
- Abstract要約: MMDEW (Maximum Mean Discrepancy on Exponential Windows) と呼ばれる新しい変更検出アルゴリズムを提案する。
MMDEWは、MDDの利点と指数窓に基づく効率的な計算を組み合わせる。
MMDEWは多対数実行時と対数メモリの複雑さを満足しており、ベンチマークデータストリーム上でのテクニックの状態を実証的に上回ることを示す。
- 参考スコア(独自算出の注目度): 3.1631981412766335
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Detecting changes is of fundamental importance when analyzing data streams and has many applications, e.g., in predictive maintenance, fraud detection, or medicine. A principled approach to detect changes is to compare the distributions of observations within the stream to each other via hypothesis testing. Maximum mean discrepancy (MMD), a (semi-)metric on the space of probability distributions, provides powerful non-parametric two-sample tests on kernel-enriched domains. In particular, MMD is able to detect any disparity between distributions under mild conditions. However, classical MMD estimators suffer from a quadratic runtime complexity, which renders their direct use for change detection in data streams impractical. In this article, we propose a new change detection algorithm, called Maximum Mean Discrepancy on Exponential Windows (MMDEW), that combines the benefits of MMD with an efficient computation based on exponential windows. We prove that MMDEW enjoys polylogarithmic runtime and logarithmic memory complexity and show empirically that it outperforms the state of the art on benchmark data streams.
- Abstract(参考訳): 変更を検出することは、データストリームを分析する場合の基本的重要性であり、予測保守、不正検出、医療など多くの応用がある。
変化を検出するための原則的なアプローチは、仮説テストを通じてストリーム内の観測の分布を互いに比較することである。
最大平均離散性(MMD)は、確率分布の空間上の(半)測度であり、カーネル富化領域上で強力な非パラメトリック2サンプルテストを提供する。
特に、MDDは穏やかな条件下で分布間の相違を検出することができる。
しかし、古典的MDD推定器は2次ランタイムの複雑さに悩まされ、データストリームにおける変更検出に直接使用される。
本稿では,MMDEW (Maximum Mean Discrepancy on Exponential Windows) と呼ばれる変更検出アルゴリズムを提案する。
MMDEWは多対数実行時と対数メモリの複雑さに優れており、ベンチマークデータストリームの最先端性よりも優れていることを実証的に証明する。
関連論文リスト
- Reproduction of scan B-statistic for kernel change-point detection algorithm [10.49860279555873]
変化点検出は、幅広い応用のために大きな注目を集めている。
本稿では,カーネルベースの効率的なスキャンB統計に基づくオンライン変更点検出アルゴリズムを最近提案した。
数値実験により, 走査型B統計が常に優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-08-23T15:12:31Z) - MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
主要な研究課題は、どのようにインパルスの整合性を確保するか、すなわち観測値とインパルス値の整合性を確保するかである。
従来の手法は、学習プロセスを導くために、計算対象の帰納的バイアスにのみ依存する。
論文 参考訳(メタデータ) (2024-08-11T10:24:53Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Partial identification of kernel based two sample tests with mismeasured
data [5.076419064097733]
最大平均離散性(MMD)のような2サンプルテストは、機械学習アプリケーションにおける2つの分布の違いを検出するためにしばしば使用される。
我々は,1つの分布の非ランダムな$epsilon$%が互いに誤ってグループ化されるような,$epsilon$-contaminationに基づくMDDの推定について検討した。
そこで本研究では,これらの境界を推定する手法を提案し,サンプルサイズが大きくなるにつれてMDD上の最も鋭い限界に収束する推定値を示す。
論文 参考訳(メタデータ) (2023-08-07T13:21:58Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Implicit Regularization Properties of Variance Reduced Stochastic Mirror
Descent [7.00422423634143]
離散VRSMD推定器列は線形回帰において最小ミラー補間子に収束することを示す。
我々は、真のモデルがスパースである場合に設定したモデル推定精度を導出する。
論文 参考訳(メタデータ) (2022-04-29T19:37:24Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
逐次的変化検出のための基本的かつ汎用的なフレームワークを開発する。
私たちの手順は、平均走行距離のクリーンで無症状な境界が伴います。
統計的および計算効率の両方を達成するために,これらの混合物を設計する方法を示す。
論文 参考訳(メタデータ) (2022-03-07T17:25:02Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
本稿では,画像中の異常を同時検出・ローカライズするPatch Distribution Modeling, PaDiMを提案する。
PaDiMは、パッチの埋め込みに事前訓練された畳み込みニューラルネットワーク(CNN)を使用している。
また、CNNの異なるセマンティックレベル間の相関を利用して、異常のローカライズも改善している。
論文 参考訳(メタデータ) (2020-11-17T17:29:18Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
マイクロクラスタ異常の検出に焦点を当てたMIDASを提案する。
さらに、アルゴリズムの内部状態に異常が組み込まれている問題を解くために、MIDAS-Fを提案する。
実験の結果,MIDAS-Fの精度はMIDASよりも有意に高かった。
論文 参考訳(メタデータ) (2020-09-17T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。