論文の概要: Universal Early Warning Signals of Phase Transitions in Climate Systems
- arxiv url: http://arxiv.org/abs/2206.00060v1
- Date: Tue, 31 May 2022 19:07:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 13:37:57.607148
- Title: Universal Early Warning Signals of Phase Transitions in Climate Systems
- Title(参考訳): 気候系における相転移の普遍的早期警告信号
- Authors: Daniel Dylewsky, Timothy M. Lenton, Marten Scheffer, Thomas M. Bury,
Christopher G. Fletcher, Madhur Anand, Chris T. Bauch
- Abstract要約: 2次元イジングモデル相転移に特化して訓練されたディープニューラルネットワークは、現実およびシミュレーションされた多くの気候システムでテストされている。
精度は従来の統計指標を上回り、空間的指標を含ませることで連続的に性能が向上することが示されている。
- 参考スコア(独自算出の注目度): 0.586336038845426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The potential for complex systems to exhibit tipping points in which an
equilibrium state undergoes a sudden and potentially irreversible shift is well
established, but prediction of these events using standard forecast modeling
techniques is quite difficult. This has led to the development of an
alternative suite of methods that seek to identify signatures of critical
phenomena in data, which are expected to occur in advance of many classes of
dynamical bifurcation. Crucially, the manifestations of these critical
phenomena are generic across a variety of systems, meaning that data-intensive
deep learning methods can be trained on (abundant) synthetic data and plausibly
prove effective when transferred to (more limited) empirical data sets. This
paper provides a proof of concept for this approach as applied to lattice phase
transitions: a deep neural network trained exclusively on 2D Ising model phase
transitions is tested on a number of real and simulated climate systems with
considerable success. Its accuracy frequently surpasses that of conventional
statistical indicators, with performance shown to be consistently improved by
the inclusion of spatial indicators. Tools such as this may offer valuable
insight into climate tipping events, as remote sensing measurements provide
increasingly abundant data on complex geospatially-resolved Earth systems.
- Abstract(参考訳): 平衡状態が突然かつ可逆的なシフトを生じさせるティッピングポイントを示す複雑なシステムの可能性は十分に確立されているが、標準的な予測モデリング技術を用いたこれらの事象の予測は極めて困難である。
これにより、データ内の重要な現象のシグネチャを識別する別の手法が開発され、多くの動的分岐のクラスに先立って発生することが期待されている。
重要なことに、これらの臨界現象の顕在化は、様々なシステムにまたがって一般的であり、つまり、データ集約的な深層学習法は、(より制限された)経験的データセットに転送されたときに、(有意な)合成データに基づいて訓練できる。
本論文は,格子相転移に応用されたアプローチの実証として,2次元Isingモデル相転移を専門に訓練したディープニューラルネットワークを実・模擬気候系でテストし,かなりの成功を収めた。
精度は従来の統計指標を上回り、空間指標を組み込むことで連続的に性能が向上することが示されている。
このようなツールは、リモートセンシングが複雑な地球系に関する豊富なデータを提供するため、気候の転換現象に関する貴重な洞察を与える可能性がある。
関連論文リスト
- Learning from the past: predicting critical transitions with machine learning trained on surrogates of historical data [3.9617282900065853]
複雑なシステムは、徐々に変化する環境条件が突然、破滅的な新しい状態へと移行する、重要な遷移を経験することができる。
これらの事象の早期警戒信号は、生態学、生物学、気候科学などの分野における意思決定に不可欠である。
本稿では,過去の遷移データに基づいて機械学習分類器を直接訓練する手法を提案する。
論文 参考訳(メタデータ) (2024-10-13T03:25:49Z) - A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
本稿では,カオスシステムの非侵襲的に解けない長期シミュレーションにニューラルネットワークモデルをトレーニングするための戦略を提案する。
トレーニングで見られるデータより30倍以上長い時間的地平線上での異方性統計を正確に予測する能力を示す。
論文 参考訳(メタデータ) (2024-08-02T18:34:30Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Early warning indicators via latent stochastic dynamical systems [0.0]
我々は、低次元多様体の潜在進化力学を捉える異方性拡散写像を開発する。
3つの効果的な警告信号は、潜時座標と潜時力学系によって導出される。
我々の早期警戒指標は状態遷移中の先端を検出することができることがわかった。
論文 参考訳(メタデータ) (2023-09-07T16:55:33Z) - Clustering-based Identification of Precursors of Extreme Events in
Chaotic Systems [0.0]
力学系の状態における急激かつ急激な高振幅変化は、極端事象と呼ばれる。
カオスシステムにおける希少かつ極端な事象の前駆体を特定するために,データ駆動のモジュラリティに基づくクラスタリング手法の適用性を検討した。
論文 参考訳(メタデータ) (2023-06-20T12:38:38Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
位相空間の再構成において,観測空間の次元性を高めるために認識ネットワークを用いる。
我々の検証は、このアプローチが元の状態空間に類似した状態空間を復元するだけでなく、新しい時系列を合成できることを示している。
論文 参考訳(メタデータ) (2020-10-13T10:10:24Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
本研究では, 測定データの非線形次元減少とスペクトルクラスタリングを行う拡散写像法が, 教師なしの複雑な位相遷移を学習する上で有意なポテンシャルを持つことを示す。
この方法は、局所観測可能量の単一の基底での測定に役立ち、多くの実験的な量子シミュレータに容易に適用できる。
論文 参考訳(メタデータ) (2020-03-16T18:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。