論文の概要: Quantum discriminative canonical correlation analysis
- arxiv url: http://arxiv.org/abs/2206.05526v1
- Date: Sat, 11 Jun 2022 13:27:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-09 20:37:06.464604
- Title: Quantum discriminative canonical correlation analysis
- Title(参考訳): 量子識別正準相関解析
- Authors: Yong-Mei Li and Hai-Ling Liu and Shi-Jie Pan and Su-Juan Qin and Fei
Gao and Qiao-Yan Wen
- Abstract要約: 一般化固有値問題を解くために,量子DCCAアルゴリズムを提案する。
提案アルゴリズムは, 古典的手法に比べて, 一定の条件下での試料の寸法の高速化を実現する。
- 参考スコア(独自算出の注目度): 4.501305807267216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discriminative Canonical Correlation Analysis (DCCA) is a powerful supervised
feature extraction technique for two sets of multivariate data, which has wide
applications in pattern recognition. DCCA consists of two parts: (i)
mean-centering that subtracts the sample mean from the sample; (ii) solving the
generalized eigenvalue problem. The cost of DCCA is expensive when dealing with
a large number of high-dimensional samples. To solve this problem, here we
propose a quantum DCCA algorithm. Specifically, we devise an efficient method
to compute the mean of all samples, then use block-Hamiltonian simulation and
quantum phase estimation to solve the generalized eigenvalue problem. Our
algorithm achieves a polynomial speedup in the dimension of samples under
certain conditions over its classical counterpart.
- Abstract(参考訳): 識別正準相関解析(DCCA)は2つの多変量データに対して強力な教師付き特徴抽出手法であり、パターン認識に広く応用されている。
DCCAは2つの部分から構成される。
(i)試料から試料を減算する平均中心
(ii)一般化固有値問題を解く。
大量の高次元サンプルを扱う場合、DCCAのコストは高くつく。
そこで本研究では,量子DCCAアルゴリズムを提案する。
具体的には,全てのサンプルの平均値を計算する効率的な手法を考案し,ブロック・ハミルトンシミュレーションと量子位相推定を用いて一般化固有値問題を解く。
本アルゴリズムは,ある条件下でのサンプルの次元における多項式の高速化を実現する。
関連論文リスト
- Harmonic Path Integral Diffusion [0.4527270266697462]
本稿では,連続多変量確率分布から抽出する新しい手法を提案する。
本手法では,状態空間の起点を中心とするデルタ関数を$t=0$とし,ターゲット分布に$t=1$で変換する。
これらのアルゴリズムは他のサンプリング手法、特にシミュレートおよびパス積分サンプリングと対比し、解析制御、精度、計算効率の点でそれらの利点を強調した。
論文 参考訳(メタデータ) (2024-09-23T16:20:21Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm [0.0]
本稿では,多種多様な最適化問題を解くために設計された非変分量子アルゴリズムを詳細に紹介する。
このアルゴリズムは、増幅状態の繰り返しの準備と測定から最適解とほぼ最適解を返す。
論文 参考訳(メタデータ) (2024-07-29T13:54:28Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
本稿では,嘉心表現の原理に基づくデータ量子化アルゴリズムを提案する。
以上の結果から, カシ量子化はモデル性能の競争力や優れた品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T12:38:46Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - $\ell_1$-norm constrained multi-block sparse canonical correlation
analysis via proximal gradient descent [0.0]
マルチブロックCCA問題を解くための近似勾配降下アルゴリズムを提案する。
得られた推定値は、適切な仮定の下では、レート最適であることが示される。
また,複数の固有ベクトルを逐次推定するデフレ手順についても述べる。
論文 参考訳(メタデータ) (2022-01-14T03:35:01Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,各独立成分を推定する副産物オンライン時系列アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T18:52:37Z) - $\ell_0$-based Sparse Canonical Correlation Analysis [7.073210405344709]
正準相関解析(CCA)モデルは、2つの変数の集合間の関連を研究する上で強力である。
その成功にもかかわらず、CCAモデルは、いずれかのモダリティにおける変数数がサンプル数を超えた場合、壊れる可能性がある。
本稿では,2つのモードのスパース部分集合に基づく相関表現の学習法である $ell_0$-CCA を提案する。
論文 参考訳(メタデータ) (2020-10-12T11:44:15Z) - Sparse Generalized Canonical Correlation Analysis: Distributed
Alternating Iteration based Approach [18.93565942407577]
Sparse Canonical correlation analysis (CCA) はスパース構造を用いた潜伏情報検出に有用な統計ツールである。
本稿では,多視点データとスパース構造との潜在関係を検出可能な一般標準相関解析(GCCA)を提案する。
論文 参考訳(メタデータ) (2020-04-23T05:53:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。