論文の概要: Accelerating numerical methods by gradient-based meta-solving
- arxiv url: http://arxiv.org/abs/2206.08594v1
- Date: Fri, 17 Jun 2022 07:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-20 15:47:34.366116
- Title: Accelerating numerical methods by gradient-based meta-solving
- Title(参考訳): 勾配に基づくメタ解法による数値計算の高速化
- Authors: Sohei Arisaka, Qianxiao Li
- Abstract要約: 科学と工学の応用においては、しばしば同様の計算問題を何度も解くことが要求される。
我々はそれらを統一的に解くための勾配に基づくアルゴリズムを提案する。
理論的解析と数値実験により,本手法の性能と汎用性を実証する。
- 参考スコア(独自算出の注目度): 15.90188271828615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In science and engineering applications, it is often required to solve
similar computational problems repeatedly. In such cases, we can utilize the
data from previously solved problem instances to improve the efficiency of
finding subsequent solutions. This offers a unique opportunity to combine
machine learning (in particular, meta-learning) and scientific computing. To
date, a variety of such domain-specific methods have been proposed in the
literature, but a generic approach for designing these methods remains
under-explored. In this paper, we tackle this issue by formulating a general
framework to describe these problems, and propose a gradient-based algorithm to
solve them in a unified way. As an illustration of this approach, we study the
adaptive generation of parameters for iterative solvers to accelerate the
solution of differential equations. We demonstrate the performance and
versatility of our method through theoretical analysis and numerical
experiments, including applications to incompressible flow simulations and an
inverse problem of parameter estimation.
- Abstract(参考訳): 科学や工学の応用では、しばしば同様の計算問題を何度も解く必要がある。
このような場合、以前に解決した問題インスタンスのデータを利用して、後続のソリューションを見つける効率を向上させることができる。
これは機械学習(特にメタラーニング)と科学計算を組み合わせるユニークな機会を提供する。
これまで、文献に様々なドメイン固有の手法が提案されてきたが、これらの手法を設計するための汎用的アプローチは未検討のままである。
本稿では,これらの問題を記述するための一般的な枠組みを定式化し,それらを統一的に解くための勾配アルゴリズムを提案する。
このアプローチの例証として、微分方程式の解を高速化する反復解法に対するパラメータの適応生成について考察する。
本手法の性能と汎用性を理論的解析と数値実験により実証し,非圧縮流シミュレーションとパラメータ推定の逆問題への応用を行った。
関連論文リスト
- Differentiable Programming for Differential Equations: A Review [36.67198631261628]
微分可能プログラミングは現代の科学計算の基盤である。
微分方程式の数値解に基づく微分関数は非自明である。
本稿では、微分方程式の数値解の微分を計算するための既存の手法を概観する。
論文 参考訳(メタデータ) (2024-06-14T03:54:25Z) - Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory [53.64687146666141]
近年,反復を必要とせずにチャネル容量を計算できる解析手法が提案されている。
トヨタが提案した逆のEm-problemに注意を向けます。
逆の Em-problem の非定型式を導出する。
論文 参考訳(メタデータ) (2024-03-14T10:20:28Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
非線形最適化問題の解法として多レベルアルゴリズムを提案し,その評価複雑性を解析する。
物理インフォームドニューラルネットワーク (PINN) を用いた偏微分方程式の解に適用し, 提案手法がより良い解法と計算量を大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-05-23T19:12:02Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
有限サムコヒーレンシブ変分不等式の問題を考える。
強い単調な問題に対しては、この方法を用いて解への線形収束を達成することができる。
論文 参考訳(メタデータ) (2022-10-12T08:04:48Z) - A Deep Gradient Correction Method for Iteratively Solving Linear Systems [5.744903762364991]
本稿では, 方程式の大, 疎, 対称, 正定値線形系の解を近似する新しい手法を提案する。
我々のアルゴリズムは、少数の反復で与えられた許容度に残留する線形系を減少させることができる。
論文 参考訳(メタデータ) (2022-05-22T06:40:38Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
本稿では,最適化アルゴリズムを用いてパラメータ化近似を用いた解を求める手法を提案する。
アルゴリズムのパラメータを変更することなく、幅広い種類の方程式を自動で解くことができる。
論文 参考訳(メタデータ) (2022-05-11T10:06:47Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Inverse Reinforcement Learning with Explicit Policy Estimates [19.159290496678004]
逆強化学習問題を解くための様々な手法が、機械学習と経済学において独立に開発された。
我々は、それらがすべて共通の形態の勾配、関連する政策と目的によって特徴づけられる最適化問題のクラスに属していることを示しています。
この最適化問題の研究から得られた知見を用いて,様々な問題シナリオを特定し,それらの問題に対する各手法の適合性について検討する。
論文 参考訳(メタデータ) (2021-03-04T07:00:58Z) - Consistency analysis of bilevel data-driven learning in inverse problems [1.0705399532413618]
本稿では,データからの正規化パラメータの適応学習を最適化により検討する。
線形逆問題に対する我々のフレームワークの実装方法を示す。
勾配降下法を用いてオンライン数値スキームを導出する。
論文 参考訳(メタデータ) (2020-07-06T12:23:29Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。