論文の概要: A Grey-box Launch-profile Aware Model for C+L Band Raman Amplification
- arxiv url: http://arxiv.org/abs/2206.12416v1
- Date: Fri, 24 Jun 2022 02:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 15:33:44.285339
- Title: A Grey-box Launch-profile Aware Model for C+L Band Raman Amplification
- Title(参考訳): C+Lバンドラマン増幅のためのグレイボックス起動認識モデル
- Authors: Yihao Zhang, Xiaomin Liu, Yichen Liu, Lilin Yi, Weisheng Hu, Qunbi
Zhuge
- Abstract要約: ニューラルネットワーク(NN)と線形回帰に基づく3段階モデリング手法を提案する。
純粋NN法と比較して高い精度、少ないデータ要求、低い計算複雑性がシミュレーションによって示される。
- 参考スコア(独自算出の注目度): 7.916888813895724
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Based on the physical features of Raman amplification, we propose a
three-step modelling scheme based on neural networks (NN) and linear
regression. Higher accuracy, less data requirements and lower computational
complexity are demonstrated through simulations compared with the pure NN-based
method.
- Abstract(参考訳): ラマン増幅の物理的特徴に基づいて,ニューラルネットワーク(nn)と線形回帰に基づく3段階モデリング手法を提案する。
純粋NN法と比較して高い精度、少ないデータ要求、低い計算複雑性がシミュレーションによって示される。
関連論文リスト
- SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBaは、単純さのバイアスを注入することによって、深いRLでパラメータをスケールアップするように設計されたアーキテクチャである。
SimBaでパラメータをスケールアップすることで、オフポリシー、オンポリシー、アン教師なしメソッドを含む様々なディープRLアルゴリズムのサンプル効率が一貫して改善される。
論文 参考訳(メタデータ) (2024-10-13T07:20:53Z) - Rational-WENO: A lightweight, physically-consistent three-point weighted essentially non-oscillatory scheme [14.120671138290104]
我々は、解の局所的な滑らかさを正確に推定するために有理ニューラルネットワークを用いる。
この手法は, 散逸を著しく低減した粒度の再構築を実現する。
提案手法の有効性を,数個の1次元,2次元,3次元の流体問題に対して示す。
論文 参考訳(メタデータ) (2024-09-13T22:11:03Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - A Neural-Network-Based Approach for Loose-Fitting Clothing [2.910739621411222]
本稿では, リアルタイム数値アルゴリズムを用いて, ゆるやかな衣服の動的モードを近似する方法を示す。
また,スキンを用いて望ましいメッシュに粗い近似を再構築する。
大量のトレーニングデータを必要とするリカレントニューラルネットワークとは対照的に、QNNはトレーニングデータを大幅に少なくする。
論文 参考訳(メタデータ) (2024-04-25T05:52:20Z) - Exploiting Spline Models for the Training of Fully Connected Layers in
Neural Network [0.0]
人工ニューラルネットワーク(ANN)の最も基本的なモジュールの1つである完全連結(FC)層は、しばしば訓練が困難で非効率であると考えられている。
fc層を訓練することの難しさを緩和するスプラインベースアプローチを提案する。
提案手法は計算コストを低減し,fc層の収束を加速し,モデルの解釈可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2021-02-12T14:36:55Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
現代のディープラーニングモデルでは、トレーニングデータに適合するために必要なパラメータよりもはるかに多くのパラメータが採用されている。
この予期せぬ振る舞いを記述するための新たなパラダイムは、エンファンダブル降下曲線(英語版)である。
本稿では,勾配降下を伴う広帯域ニューラルネットワークの挙動を特徴付けるニューラル・タンジェント・カーネルを用いた一般化の高精度な高次元解析を行う。
論文 参考訳(メタデータ) (2020-08-15T20:55:40Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。