論文の概要: Off-the-grid learning of mixtures from a continuous dictionary
- arxiv url: http://arxiv.org/abs/2207.00171v2
- Date: Wed, 09 Apr 2025 08:17:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:04:25.759064
- Title: Off-the-grid learning of mixtures from a continuous dictionary
- Title(参考訳): 連続辞書からの混合のオフザグリッド学習
- Authors: Cristina Butucea, Jean-François Delmas, Anne Dutfoy, Clément Hardy,
- Abstract要約: 我々は,信号が未知の,おそらく増大する可能性のある,真の非線形パラメータによってパラメータ化された連続辞書から発行される特徴量の有限混合である一般非線形モデルを考える。
そこで本研究では,パラメータ空間上の離散化スキームを一切用いないオフ・ザ・グリッド最適化手法を提案する。
線形パラメータと非線形パラメータの両方に対する推定の質を高い確率で定量化する収束率を確立する。
- 参考スコア(独自算出の注目度): 2.774897240515734
- License:
- Abstract: We consider a general non-linear model where the signal is a finite mixture of an unknown, possibly increasing, number of features issued from a continuous dictionary parameterized by a real non-linear parameter. The signal is observed with Gaussian (possibly correlated) noise in either a continuous or a discrete setup. We propose an off-the-grid optimization method, that is, a method which does not use any discretization scheme on the parameter space, to estimate both the non-linear parameters of the features and the linear parameters of the mixture. We use recent results on the geometry of off-the-grid methods to give minimal separation on the true underlying non-linear parameters such that interpolating certificate functions can be constructed. Using also tail bounds for suprema of Gaussian processes we bound the prediction error with high probability. Assuming that the certificate functions can be constructed, our prediction error bound is up to $\log$-factors similar to the rates attained by the Lasso predictor in the linear regression model. We also establish convergence rates that quantify with high probability the quality of estimation for both the linear and the non-linear parameters. We develop in full details our main results for two applications: the Gaussian spike deconvolution and the scaled exponential model.
- Abstract(参考訳): 信号が未知の、おそらく増大する可能性のある、真の非線形パラメータによってパラメータ化された連続辞書から発行される特徴の有限混合である一般非線形モデルを考える。
信号は連続的または離散的なセットアップにおいてガウス雑音(おそらく相関)で観測される。
そこで本研究では,パラメータ空間上の離散化スキームを一切用いないオフ・ザ・グリッド最適化手法を提案し,特徴量の非線形パラメータと混合パラメータの線形パラメータの両方を推定する。
証明関数を補間するような真の非線形パラメータの分離を最小限に抑えるために、オフ・ザ・グリッド法の幾何学に関する最近の結果を用いる。
ガウス過程の上限にもテール境界を用いることで、予測誤差を高い確率で有界化する。
証明関数が構築可能であると仮定すると、線形回帰モデルにおけるLasso予測器が達成したレートと同様、予測誤差境界は$\log$-factorsである。
また、線形パラメータと非線形パラメータの両方に対する推定の質を高い確率で定量化する収束率を確立する。
ガウススパイクデコンボリューション(英語版)とスケールされた指数モデル(英語版)の2つの応用に対する主要な結果について、詳細を述べる。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Overparameterized Multiple Linear Regression as Hyper-Curve Fitting [0.0]
線形モデルは, モデル仮定に反する非線形依存が存在する場合でも, 正確な予測を生成することが証明された。
ハイパーカーブのアプローチは、予測変数のノイズに関する問題を正規化するのに特に適しており、モデルからノイズや「不適切な」予測子を取り除くのに使うことができる。
論文 参考訳(メタデータ) (2024-04-11T15:43:11Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Off-the-grid prediction and testing for linear combination of translated features [2.774897240515734]
付加的なガウス雑音過程で信号(離散あるいは連続)が観測されるモデルを考える。
我々は,スケールパラメータが変化する可能性を考慮して,オフ・ザ・グリッド推定器の過去の予測結果を拡張した。
本稿では,観測信号の特徴が与えられた有限集合に属するか否かを検証する手法を提案する。
論文 参考訳(メタデータ) (2022-12-02T13:48:45Z) - Simultaneous off-the-grid learning of mixtures issued from a continuous
dictionary [0.4369058206183195]
ノイズによる信号の連続を観測する。
各信号は連続辞書に属する未知の数の特徴の有限混合である。
正規化最適化問題を定式化し, 混合系の線形係数を同時に推定する。
論文 参考訳(メタデータ) (2022-10-27T06:43:37Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
未知のハイパーパラメータを持つ設定において、ロバストなガウス過程の均一なエラー境界を導入する。
提案手法はハイパーパラメータの空間における信頼領域を計算し,モデル誤差に対する確率的上限を求める。
実験により、バニラ法やベイズ法よりもバニラ法の方がはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-09-06T17:10:01Z) - Boosting in Univariate Nonparametric Maximum Likelihood Estimation [5.770800671793959]
非パラメトリック最大推定は未知の密度分布を推定することを目的としている。
非パラメトリックデータフィッティングにおけるオーバーパラメータ化を軽減するため、スムーズな仮定は通常、推定にマージされる。
非パラメトリックログ類似性の2次近似によりブースティングアルゴリズムを推定する。
論文 参考訳(メタデータ) (2021-01-21T08:46:33Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
ラッソ型問題に適した行列逆転のない効率的な暗黙微分アルゴリズムを提案する。
提案手法は,解の空間性を利用して高次元データにスケールする。
論文 参考訳(メタデータ) (2020-02-20T18:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。