論文の概要: Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX
surface code
- arxiv url: http://arxiv.org/abs/2207.04383v3
- Date: Mon, 10 Apr 2023 08:07:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 23:43:33.017323
- Title: Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX
surface code
- Title(参考訳): gotesman-kitaev-preskill符号とxzzx曲面符号の結合
- Authors: Jiaxuan Zhang, Yu-Chun Wu, and Guo-Ping Guo
- Abstract要約: Gottesman-Kitaev-Preskill (GKP)と呼ばれるボソニックなコードの重要なカテゴリは、最近多くの関心を集めている。
GKP符号の誤り訂正能力は、位置と運動量における小さなシフト誤差しか補正できないため、制限されている。
大規模でフォールトトレラントな量子計算のためのGKPエラー補正を促進する自然なアプローチは、符号化されたGKP状態を安定化符号で結合する。
- 参考スコア(独自算出の注目度): 1.2999413717930821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic codes provide an alternative option for quantum error correction. An
important category of bosonic codes called the Gottesman-Kitaev-Preskill (GKP)
code has aroused much interest recently. Theoretically, the error correction
ability of GKP code is limited since it can only correct small shift errors in
position and momentum quadratures. A natural approach to promote the GKP error
correction for large-scale, fault-tolerant quantum computation is concatenating
encoded GKP states with a stabilizer code. The performance of the XZZX
surface-GKP code, i.e., the single-mode GKP code concatenated with the XZZX
surface code is investigated in this paper under two different noise models.
Firstly, in the code-capacity noise model, the asymmetric rectangular GKP code
with parameter $\lambda$ is introduced. Using the minimum weight perfect
matching decoder combined with the continuous-variable GKP information, the
optimal threshold of the XZZX-surface GKP code reaches $\sigma\approx0.67$ when
$\lambda=2.1$, compared with the threshold $\sigma\approx0.60$ of the standard
surface-GKP code. Secondly, we analyze the shift errors of two-qubit gates in
the actual implementation and build the full circuit-level noise model. By
setting the appropriate bias parameters, the logical error rate is reduced by
several times in some cases. These results indicate the XZZX surface-GKP codes
are more suitable for asymmetric concatenation under the general noise models.
We also estimate the overhead of the XZZX-surface GKP code which uses about 291
GKP states with the noise parameter 18.5 dB ($\kappa/g \approx 0.71\%$) to
encode a logical qubit with the error rate $2.53\times10^{-7}$, compared with
the qubit-based surface code using 3041 qubits to achieve almost the same
logical error rate.
- Abstract(参考訳): ボソニック符号は量子誤り訂正の代替オプションを提供する。
Gottesman-Kitaev-Preskill (GKP)と呼ばれるボソニックなコードの重要なカテゴリは、最近多くの関心を集めている。
理論的には、GKP符号の誤り訂正能力は、位置と運動量における小さなシフト誤差しか補正できないため制限されている。
大規模でフォールトトレラントな量子計算のためのGKPエラー補正を促進する自然なアプローチは、符号化されたGKP状態を安定化符号で結合する。
XZZX曲面-GKP符号,すなわちXZZX曲面コードと結合した単一モードGKP符号の性能を2つの異なるノイズモデルで検討した。
まず、符号容量ノイズモデルにおいて、パラメータ$\lambda$の非対称長方形GKP符号を導入する。
最小ウェイト完全整合デコーダと連続可変GKP情報を組み合わせることで、XZX表面GKP符号の最適しきい値は、標準表面GKP符号のしきい値である$\sigma\approx0.67$に対して$\lambda=2.1$となる。
次に、実際の実装における2量子ゲートのシフト誤差を分析し、全回路レベルのノイズモデルを構築する。
適切なバイアスパラメータを設定することで、論理誤差率を数回減少させる場合もある。
これらの結果は、XZZX曲面-GKP符号が一般的な雑音モデルの下での非対称結合により適していることを示している。
また、ノイズパラメータ18.5 db (\kappa/g \approx 0.71\%$) の約291 gkp状態を用いてエラーレート2.53\times10^{-7}$の論理キュービットを符号化するxzzx-surface gkp符号のオーバーヘッドを、3041 qubitsを使用したキュービットベースの表面コードと比較して、ほぼ同じ論理エラー率を達成するために見積もった。
関連論文リスト
- Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
並列ビットフリップデコーダのDFRを高精度に推定する手法を提案する。
本研究は,本症候群のモデル化およびシミュレーションによる重み比較,第1イテレーション終了時の誤りビット分布の誤検出,復号化復号化率(DFR)について検証した。
論文 参考訳(メタデータ) (2024-01-30T11:40:24Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP)符号は位相空間の小さな変位誤差を補正するために提案されている。
位相空間のノイズが偏った場合、二乗格子GKP符号はXZZX曲面符号または繰り返し符号でアシラリー化することができる。
本稿では,GKP繰り返し符号と物理アンシラリーGKP量子ビットの重み付き雑音補正性能について検討する。
論文 参考訳(メタデータ) (2023-08-03T06:14:43Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
ボソニック符号は、qubit型量子情報をより大きなボソニックヒルベルト空間にマッピングする。
我々は、これらの符号 GKP qunaught 状態の2つのインスタンスと、ゼロ論理エンコードされた量子ビットに対応する4つの対称二項状態とを変換する。
GKPqunaught状態は98%以上、確率は約3.14%である。
論文 参考訳(メタデータ) (2023-01-24T14:17:07Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Gottesmann-Kitaev-Preskill (GKP)エンコーディングに基づく連続可変量子コンピューティングアーキテクチャが有望な候補として浮上している。
矩形格子GKPの符号容量挙動を,等方的ガウス変位チャネルの下で繰り返し符号化する。
論文 参考訳(メタデータ) (2022-12-21T22:56:05Z) - Tailored XZZX codes for biased noise [60.12487959001671]
我々は,XZX型安定化器発生器を有する符号群について検討した。
これらのXZZX符号は、バイアスノイズに合わせると、非常に量子効率が高いことを示す。
論文 参考訳(メタデータ) (2022-03-30T17:26:31Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Quantum error correction with the color-Gottesman-Kitaev-Preskill code [5.780815306252637]
Gottesman-Kitaev-Preskill (GKP) 符号はボゾン量子誤り訂正符号の重要な型である。
本稿では,単一モードGKP符号と2次元(2次元)カラー符号との結合について考察する。
論文 参考訳(メタデータ) (2021-12-29T08:19:36Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Lattice Gauge Theories (LGT) の量子シミュレーションは、物理セクターと非物理セクターの両方を含む拡大されたヒルベルト空間上でしばしば定式化される。
本稿では,位相フリップ誤り訂正符号とガウス法則を組み合わせることで,そのような冗長性を利用する簡易なフォールトトレラント法を提案する。
論文 参考訳(メタデータ) (2021-12-09T19:29:34Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
本研究では, 平面GKP符号の有効利用, すなわち, 素二次元キュービットの代わりにボソニックGKP量子ビットからなる曲面符号を提案する。
論理的故障率の低い$p_L 10-7$は、適度なハードウェア要件で達成可能であることを示す。
論文 参考訳(メタデータ) (2021-03-11T23:07:52Z) - Enhanced noise resilience of the surface-GKP code via designed bias [0.0]
本研究では,標準のシングルモード Gottesman-Kitaev-Preskill (GKP) コードと曲面コードとを連結して得られたコードについて検討する。
各モードに単一モードの一意化を適用すると、(ガウス)変位誤差に対するこの表面GKP符号の耐雑音性が向上することを示す。
論文 参考訳(メタデータ) (2020-04-01T16:08:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。