論文の概要: A Singular Woodbury and Pseudo-Determinant Matrix Identities and
Application to Gaussian Process Regression
- arxiv url: http://arxiv.org/abs/2207.08038v1
- Date: Sat, 16 Jul 2022 23:45:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 19:29:23.369608
- Title: A Singular Woodbury and Pseudo-Determinant Matrix Identities and
Application to Gaussian Process Regression
- Title(参考訳): 特異ウッドベリーと擬決定行列の同一性とガウス過程回帰への応用
- Authors: Siavash Ameli, Shawn C. Shadden
- Abstract要約: ウッドベリー行列恒等式がもはや持たないとき、ウッドベリー行列恒等式の特異な定式化で生じる行列について検討する。
ガウス過程回帰への直接的応用を持つ行列に対して、一般化された逆および擬行列の恒等性を示す。
- 参考スコア(独自算出の注目度): 1.5002438468152661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a matrix that arises in a singular formulation of the Woodbury
matrix identity when the Woodbury identity no longer holds. We present
generalized inverse and pseudo-determinant identities for such matrix that have
direct applications to the Gaussian process regression, in particular, its
likelihood representation and its precision matrix. We also provide an
efficient algorithm and numerical analysis for the presented determinant
identities and demonstrate their advantages in certain conditions which are
applicable to computing log-determinant terms in likelihood functions of
Gaussian process regression.
- Abstract(参考訳): 我々はウッドベリー行列の恒等式がもはや成立しないときにウッドベリー行列の特異な定式化で生じる行列について研究する。
本稿では、ガウス過程の回帰、特にその可能性表現とその精度行列に直接適用できるような行列に対して、一般化された逆および擬行列の恒等性を示す。
また,提案する行列式に対する効率的なアルゴリズムと数値解析を行い,ガウス過程回帰の帰納関数における対数決定項の計算に適用できる条件下での利点を示す。
関連論文リスト
- Resolvent-based quantum phase estimation: Towards estimation of parametrized eigenvalues [0.0]
行列分解形式に基づく非正規行列の固有値を推定するための新しい手法を提案する。
与えられた非単項行列の単位ノルム固有値の位相を推定するための最初の効率的なアルゴリズムを構築する。
次に、与えられた非エルミート行列の実固有値を推定する効率的なアルゴリズムを構築する。
論文 参考訳(メタデータ) (2024-10-07T08:51:05Z) - Multiresolution kernel matrix algebra [0.0]
本研究では, あるS形式において, 最適スパース行列を生成するサンプルレットを用いて, カーネル行列の圧縮を示す。
カーネル行列の逆数(もし存在するなら)は S-形式でも圧縮可能である。
行列代数は擬微分計算によって数学的に正当化される。
論文 参考訳(メタデータ) (2022-11-21T17:50:22Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
本稿では,固定次元の共分散行列の固有ベクトルの個々のエントリに対する信頼性境界の計算に挑戦する。
逆共分散行列、いわゆる精度行列の成分を束縛する手法を導出する。
これらの結果の応用として,精度行列の非ゼロ値のテストを可能にする新しい統計テストを示す。
論文 参考訳(メタデータ) (2022-08-25T10:12:53Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Symplectic decomposition from submatrix determinants [0.0]
ガウスの量子情報における重要な定理は、シンプレクティック変換によって任意のガウス状態の共分散行列を対角化できることを示している。
近年,ある部分行列からエルミート行列の固有ベクトルを求める手法に着想を得て,ある部分行列式からシンプレクティックを対角化する方法を考案した。
論文 参考訳(メタデータ) (2021-08-11T18:00:03Z) - Robust 1-bit Compressive Sensing with Partial Gaussian Circulant
Matrices and Generative Priors [54.936314353063494]
我々は,ロバストな1ビット圧縮センシングのための相関に基づく最適化アルゴリズムのリカバリ保証を提供する。
我々は,実用的な反復アルゴリズムを用いて,画像データセットの数値実験を行い,結果の相関付けを行う。
論文 参考訳(メタデータ) (2021-08-08T05:28:06Z) - Variance Reduction for Matrix Computations with Applications to Gaussian
Processes [0.0]
本稿では,行列分解による行列計算の分散化に着目する。
行列の平方根因数分解の計算は、いくつかの重要な場合において、任意により良い性能が得られることを示す。
論文 参考訳(メタデータ) (2021-06-28T10:41:22Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
非PSDおよび2乗根行列の次元削減法を提案する。
複数のダウンストリームタスクにこれらのテクニックをどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-06-16T04:07:48Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
我々は、原子核ノルム正規化行列補完に対する相対誤差を開発する。
未知行列の最適低ランク近似を回復するための相対上界を導出する。
論文 参考訳(メタデータ) (2015-04-26T13:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。