論文の概要: Physics-informed neural networks for diffraction tomography
- arxiv url: http://arxiv.org/abs/2207.14230v1
- Date: Thu, 28 Jul 2022 16:56:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:58:25.717525
- Title: Physics-informed neural networks for diffraction tomography
- Title(参考訳): 回折トモグラフィのための物理インフォームニューラルネットワーク
- Authors: Amirhossein Saba, Carlo Gigli, Ahmed B. Ayoub, and Demetri Psaltis
- Abstract要約: 生体試料のトモグラフィー再構成のためのフォワードモデルとして物理インフォームドニューラルネットワークを提案する。
このネットワークをヘルムホルツ方程式で物理的損失として訓練することにより、散乱場を正確に予測することができる。
- 参考スコア(独自算出の注目度): 0.1199955563466263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a physics-informed neural network as the forward model for
tomographic reconstructions of biological samples. We demonstrate that by
training this network with the Helmholtz equation as a physical loss, we can
predict the scattered field accurately. It will be shown that a pretrained
network can be fine-tuned for different samples and used for solving the
scattering problem much faster than other numerical solutions. We evaluate our
methodology with numerical and experimental results. Our physics-informed
neural networks can be generalized for any forward and inverse scattering
problem.
- Abstract(参考訳): 生体試料のトモグラフィー再構成のためのフォワードモデルとして物理インフォームドニューラルネットワークを提案する。
ヘルムホルツ方程式を物理的損失としてこのネットワークを訓練することで、散乱場を正確に予測できることを実証する。
事前学習されたネットワークは、異なるサンプルに対して微調整が可能であり、他の数値解よりも高速に散乱問題を解くために使用される。
本手法を数値および実験結果を用いて評価する。
我々の物理インフォームドニューラルネットワークは、任意の前方および逆散乱問題に対して一般化することができる。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Super-resolving sparse observations in partial differential equations: A
physics-constrained convolutional neural network approach [6.85316573653194]
非線形偏微分方程式のスパース観測から高分解能解を推定する物理制約畳み込みニューラルネットワーク(CNN)を提案する。
データセットの事前の物理知識を制約することにより、高解像度のトレーニングを使わずに未解決の物理力学を推測できることが示される。
論文 参考訳(メタデータ) (2023-06-19T15:00:04Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
訓練されていない畳み込みニューラルネットワークは、画像の回復と復元に非常に成功したツールとして登場した。
トレーニングされていない畳み込みニューラルネットワークは、ほぼ最小限のランダムな測定値から、十分に構造化された信号や画像を概ね再構成可能であることを示す。
論文 参考訳(メタデータ) (2020-05-07T15:57:25Z) - Neural Network Solutions to Differential Equations in Non-Convex
Domains: Solving the Electric Field in the Slit-Well Microfluidic Device [1.7188280334580193]
スリットウェルマイクロ流体装置における電位と対応する電場を近似するためにニューラルネットワーク法を用いる。
ディープ・ニューラル・ネットワークは 浅いニューラル・ネットワークをはるかに上回っています
論文 参考訳(メタデータ) (2020-04-25T21:20:03Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
この研究は、物理システムの結果を予測し、ノイズの多いデータから隠れた物理を発見するための物理情報ニューラルネットワークの有効性に焦点を当てる。
本稿では,モデル学習中の勾配統計を利用して,複合損失関数の異なる項間の相互作用のバランスをとる学習速度アニーリングアルゴリズムを提案する。
また、そのような勾配に耐性のある新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-13T21:23:49Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
この研究では、ニューラルネットワークの特定のクラス、すなわち残留ニューラルネットワークに焦点を当てる。
我々は、ネットワークのパラメータ、すなわち重みとバイアスに関する定常状態と感度を分析する。
残留ニューラルネットワークにインスパイアされた微視的ダイナミクスの修正は、ネットワークのフォッカー・プランクの定式化につながる。
論文 参考訳(メタデータ) (2020-01-07T13:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。