論文の概要: Model Reduction for Nonlinear Systems by Balanced Truncation of State
and Gradient Covariance
- arxiv url: http://arxiv.org/abs/2207.14387v1
- Date: Thu, 28 Jul 2022 21:45:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-01 13:33:55.061650
- Title: Model Reduction for Nonlinear Systems by Balanced Truncation of State
and Gradient Covariance
- Title(参考訳): 状態の平衡トラニケーションと勾配共分散による非線形系のモデル削減
- Authors: Samuel E. Otto, Alberto Padovan, Clarence W. Rowley
- Abstract要約: モデル還元のための低次元座標系は、系の感度と軌道に沿った状態の分散に関する随伴情報とをバランスさせる。
これらの手法を, 単純かつ挑戦的な3次元システムと, 105 ドル状態変数を持つ軸対称噴流シミュレーションで実演する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Data-driven reduced-order models often fail to make accurate forecasts of
high-dimensional nonlinear systems that are sensitive along coordinates with
low-variance because such coordinates are often truncated, e.g., by proper
orthogonal decomposition, kernel principal component analysis, and
autoencoders. Such systems are encountered frequently in shear-dominated fluid
flows where non-normality plays a significant role in the growth of
disturbances. In order to address these issues, we employ ideas from active
subspaces to find low-dimensional systems of coordinates for model reduction
that balance adjoint-based information about the system's sensitivity with the
variance of states along trajectories. The resulting method, which we refer to
as covariance balancing reduction using adjoint snapshots (CoBRAS), is
identical to balanced truncation with state and adjoint-based gradient
covariance matrices replacing the system Gramians and obeying the same key
transformation laws. Here, the extracted coordinates are associated with an
oblique projection that can be used to construct Petrov-Galerkin reduced-order
models. We provide an efficient snapshot-based computational method analogous
to balanced proper orthogonal decomposition. This also leads to the observation
that the reduced coordinates can be computed relying on inner products of state
and gradient samples alone, allowing us to find rich nonlinear coordinates by
replacing the inner product with a kernel function. In these coordinates,
reduced-order models can be learned using regression. We demonstrate these
techniques and compare to a variety of other methods on a simple, yet
challenging three-dimensional system and an axisymmetric jet flow simulation
with $10^5$ state variables.
- Abstract(参考訳): データ駆動の減階モデルでは、例えば適切な直交分解、カーネル主成分分析、オートエンコーダによって、そのような座標がしばしば切り離されるため、低分散の座標に沿って感度の高い高次元非線形系の正確な予測ができないことが多い。
このようなシステムは、非正規性が乱れの成長に重要な役割を果たすせん断支配流体で頻繁に発生する。
これらの問題に対処するために,我々は,モデル還元のための低次元座標系を見つけるために,活性部分空間のアイデアを用いて,系の感度と軌道に沿った状態の分散のバランスをとる。
共分散バランス低減法として随伴スナップショット(cobras)と呼ばれる手法は,システムグラミアンを置換し,同じ鍵変換則に従う状態および随伴に基づく勾配共分散行列とのバランス切断法と同一である。
ここで、抽出された座標は、ペトロフ・ガレルキン還元次モデルを構築するのに使用できる斜射影に関連付けられる。
バランスのとれた適切な直交分解に類似した効率的なスナップショットベースの計算手法を提供する。
これはまた、状態と勾配サンプルの内側積のみに依存する還元座標を計算でき、内側積をカーネル関数に置き換えることでリッチな非線形座標を見つけることができるという観測結果をもたらす。
これらの座標では、回帰を用いて低次モデルを学習することができる。
これらの手法を実証し、簡単な3次元システムと10^5$状態変数を持つ軸対称噴流シミュレーションについて、他の様々な手法と比較する。
関連論文リスト
- On Learning Gaussian Multi-index Models with Gradient Flow [57.170617397894404]
高次元ガウスデータに対する多次元回帰問題の勾配流について検討する。
低階射影をパラメトリする部分空間よりも、非パラメトリックモデルで低次元リンク関数を無限に高速に学習する2時間スケールのアルゴリズムを考える。
論文 参考訳(メタデータ) (2023-10-30T17:55:28Z) - Accurate Data-Driven Surrogates of Dynamical Systems for Forward
Propagation of Uncertainty [0.0]
collocation (SC) は、不確実性のための代理モデルを構築するための非侵入的な方法である。
この研究は、解ではなくモデルの力学にSC近似を適用する別のアプローチを示す。
SC-over-dynamics フレームワークは,システム軌道とモデル状態分布の両面において,誤差が小さくなることを示した。
論文 参考訳(メタデータ) (2023-10-16T21:07:54Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs [0.8192907805418583]
本稿では,グラフ畳み込みオートエンコーダ(GCA-ROM)に基づく非線形モデルオーダー削減のためのフレームワークを提案する。
我々は、GNNを利用して、圧縮された多様体を符号化し、パラメタライズされたPDEの高速な評価を可能にする、非侵襲的でデータ駆動の非線形還元手法を開発した。
論文 参考訳(メタデータ) (2023-05-15T12:01:22Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
本稿では,2次元曲率をレベルセット法で近似するための誤差ニューラルモデルに基づく手法を提案する。
我々の主な貢献は、需要に応じて機械学習操作を可能にする数値スキームに依存する、再設計されたハイブリッド・ソルバである。
論文 参考訳(メタデータ) (2022-01-22T05:14:40Z) - Nonlinear proper orthogonal decomposition for convection-dominated flows [0.0]
そこで本稿では,自動エンコーダと長期記憶ネットワークを組み合わせたエンドツーエンドのガレルキンフリーモデルを提案する。
我々の手法は精度を向上するだけでなく、トレーニングやテストの計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2021-10-15T18:05:34Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。