論文の概要: Graph Neural Network with Local Frame for Molecular Potential Energy
Surface
- arxiv url: http://arxiv.org/abs/2208.00716v2
- Date: Fri, 21 Apr 2023 17:58:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 18:20:22.601678
- Title: Graph Neural Network with Local Frame for Molecular Potential Energy
Surface
- Title(参考訳): 分子ポテンシャルエネルギー表面のための局所フレーム付きグラフニューラルネットワーク
- Authors: Xiyuan Wang, Muhan Zhang
- Abstract要約: 分子表現学習に新しい局所フレーム法を導入し,その表現性を解析する。
我々は、非退化フレームが与えられた場合、通常のGNNでさえ分子をインジェクティブにエンコードし、最大表現率に達することを証明した。
実験では、単純な通常のGNNアーキテクチャを使用しながら、最先端の精度を実現している。
- 参考スコア(独自算出の注目度): 9.594432031144715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling molecular potential energy surface is of pivotal importance in
science. Graph Neural Networks have shown great success in this field. However,
their message passing schemes need special designs to capture geometric
information and fulfill symmetry requirement like rotation equivariance,
leading to complicated architectures. To avoid these designs, we introduce a
novel local frame method to molecule representation learning and analyze its
expressivity. Projected onto a frame, equivariant features like 3D coordinates
are converted to invariant features, so that we can capture geometric
information with these projections and decouple the symmetry requirement from
GNN design. Theoretically, we prove that given non-degenerate frames, even
ordinary GNNs can encode molecules injectively and reach maximum expressivity
with coordinate projection and frame-frame projection. In experiments, our
model uses a simple ordinary GNN architecture yet achieves state-of-the-art
accuracy. The simpler architecture also leads to higher scalability. Our model
only takes about 30% inference time and 10% GPU memory compared to the most
efficient baselines.
- Abstract(参考訳): 分子ポテンシャルエネルギー表面のモデリングは科学において重要な要素である。
グラフニューラルネットワークはこの分野で大きな成功を収めている。
しかし、それらのメッセージパッシングスキームは、幾何学的情報をキャプチャし、回転同値のような対称性要件を満たすために特別な設計を必要とする。
これらの設計を避けるために,分子表現学習のための新しい局所フレーム法を導入し,その表現性を分析する。
フレーム上に投影された3d座標のような同値な特徴は不変な特徴に変換され、これらの射影で幾何学的情報をキャプチャし、対称性要求をgnn設計から切り離すことができる。
理論的には、任意の非退化フレームであっても、通常のgnnでも分子を注入的にエンコードでき、座標射影とフレーム射影で最大表現率に達することが証明される。
実験では、単純な通常のGNNアーキテクチャを使用しながら、最先端の精度を実現する。
アーキテクチャがシンプルになるとスケーラビリティも向上する。
我々のモデルは、最も効率的なベースラインに比べて30%の推論時間と10%のGPUメモリしか必要としない。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - On the Completeness of Invariant Geometric Deep Learning Models [22.43250261702209]
不変モデルは、点雲における情報的幾何学的特徴を利用して意味のある幾何学的表現を生成することができる。
最も単純なグラフグラフニューラルネットワーク(サブグラフGNN)の幾何学的対応であるGeoNGNNは、これらのコーナーケースの対称性を効果的に破ることができることを示す。
理論ツールとしてGeoNGNNを活用することで、1)従来のグラフ学習で開発されたほとんどのグラフGNNは、E(3)完全性を持つ幾何学的シナリオにシームレスに拡張できる。
論文 参考訳(メタデータ) (2024-02-07T13:32:53Z) - A quatum inspired neural network for geometric modeling [14.214656118952178]
本稿では,MPSベースのメッセージパッシング戦略を提案する。
本手法は,多体関係を効果的にモデル化し,平均場近似を抑える。
これは幾何学的GNNに固有の標準メッセージパッシングおよびレイヤ集約モジュールをシームレスに置き換える。
論文 参考訳(メタデータ) (2024-01-03T15:59:35Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Torsion Graph Neural Networks [21.965704710488232]
解析的トーション強化グラフニューラルネットワークモデルであるTorGNNを提案する。
われわれのTorGNNでは,各エッジに対して対応する局所単体複合体を同定し,解析トーションを算出する。
我々のTorGNNは両方のタスクにおいて優れた性能を達成でき、様々な最先端モデルより優れていることが判明した。
論文 参考訳(メタデータ) (2023-06-23T15:02:23Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - A new perspective on building efficient and expressive 3D equivariant
graph neural networks [39.0445472718248]
等変GNNの表現力を評価するための3次元同型階層を提案する。
我々の研究は、表現的かつ効率的な幾何学的GNNを設計するための2つの重要なモジュールに繋がる。
本理論の適用性を示すため,これらのモジュールを効果的に実装したLEFTNetを提案する。
論文 参考訳(メタデータ) (2023-04-07T18:08:27Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
グラフ構造化データのための新しいハイブリッド量子古典アルゴリズムを提案し、これをEgo-graph based Quantum Graph Neural Network (egoQGNN)と呼ぶ。
egoQGNNはテンソル積とユニティ行列表現を用いてGNN理論フレームワークを実装し、必要なモデルパラメータの数を大幅に削減する。
このアーキテクチャは、現実世界のデータからヒルベルト空間への新しいマッピングに基づいている。
論文 参考訳(メタデータ) (2022-01-13T16:35:45Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。