論文の概要: SciMED: A Computational Framework For Physics-Informed Symbolic
Regression with Scientist-In-The-Loop
- arxiv url: http://arxiv.org/abs/2209.06257v1
- Date: Tue, 13 Sep 2022 18:31:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-15 14:00:52.582211
- Title: SciMED: A Computational Framework For Physics-Informed Symbolic
Regression with Scientist-In-The-Loop
- Title(参考訳): SciMED:科学者による物理インフォーマルなシンボリック回帰のための計算フレームワーク
- Authors: Liron Simon Keren, Alex Liberzon, Teddy Lazebnik
- Abstract要約: 我々はSciMED(Scientist-Machine Equation Detector)と呼ばれる新しいオープンソースの計算フレームワークを提案する。
SciMEDは科学分野の知恵をサイエント・イン・ザ・ループアプローチと最先端の象徴的回帰手法に統合する。
SciMEDはノイズデータから正しい物理的意味のある記号表現を発見するのに十分頑健であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering a meaningful, dimensionally homogeneous, symbolic expression that
explains experimental data is a fundamental challenge in many scientific
fields. We present a novel, open-source computational framework called
Scientist-Machine Equation Detector (SciMED), which integrates scientific
discipline wisdom in a scientist-in-the-loop approach with state-of-the-art
symbolic regression (SR) methods. SciMED combines a genetic algorithm-based
wrapper selection method with automatic machine learning and two levels of SR
methods. We test SciMED on four configurations of the settling of a sphere with
and without a non-linear aerodynamic drag force. We show that SciMED is
sufficiently robust to discover the correct physically meaningful symbolic
expressions from noisy data. Our results indicate better performance on these
tasks than the state-of-the-art SR software package.
- Abstract(参考訳): 実験データを説明する有意義で次元的に均質で象徴的な表現を見つけることは、多くの科学分野において根本的な課題である。
我々はSciMED(Scientist-Machine Equation Detector)と呼ばれる新しいオープンソースの計算フレームワークを提案する。
SciMEDは遺伝的アルゴリズムに基づくラッパー選択法と自動機械学習と2段階のSRメソッドを組み合わせる。
球面沈降の4つの構成に対して, 非線形空気抵抗力の有無でSciMEDを試験した。
SciMEDはノイズデータから正しい物理的意味のある記号表現を発見するのに十分頑健であることを示す。
その結果,最新のsrソフトウェアパッケージよりもこれらのタスクの性能が向上した。
関連論文リスト
- MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - Discovering symbolic expressions with parallelized tree search [59.92040079807524]
記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは、複雑性の問題に対処する際の精度と効率の重要なボトルネックに直面してきた。
本稿では,限定データから汎用数学的表現を効率的に抽出する並列木探索(PTS)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:41:15Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
Identification [1.8434042562191815]
本稿では,システム生物学におけるパラメータ推定と物理識別の欠如 (グレーボックス) のための新しい枠組みを提案する。
提案するフレームワーク - AI-Aristotle は,EXtreme Theory of Functional Connection (X-TFC) ドメイン分割と物理インフォームドニューラルネットワーク (PINN) を組み合わせたものだ。
システム生物学における2つのベンチマーク問題に基づいて,AI-Aristotleの精度,速度,柔軟性,堅牢性を検証した。
論文 参考訳(メタデータ) (2023-09-29T14:45:51Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
シミュレーション知能の9つのモチーフ」は、科学計算、科学シミュレーション、人工知能の融合に必要な重要なアルゴリズムの開発と統合のためのロードマップである。
シミュレーションインテリジェンスのモチーフは、オペレーティングシステムのレイヤ内のコンポーネントとよく似ています。
我々は、モチーフ間の協調的な努力が科学的な発見を加速する大きな機会をもたらすと信じている。
論文 参考訳(メタデータ) (2021-12-06T18:45:31Z) - Universal Differential Equations for Scientific Machine Learning [1.0539847330971805]
我々は、物理法則や科学モデルに関する情報とデータ駆動機械学習アプローチを混合するためのツールとして、SciMLソフトウェアエコシステムを紹介した。
生体機構の自動発見から高次元ハミルトン・ヤコビ・ベルマン方程式の解法に至るまで、様々な応用がいかにフレーズ化され、効率的に扱われるかを示す。
論文 参考訳(メタデータ) (2020-01-13T16:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。