論文の概要: FV-Train: Quantum Convolutional Neural Network Training with a Finite
Number of Qubits by Extracting Diverse Features
- arxiv url: http://arxiv.org/abs/2209.08727v1
- Date: Mon, 19 Sep 2022 02:53:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-26 02:28:43.619463
- Title: FV-Train: Quantum Convolutional Neural Network Training with a Finite
Number of Qubits by Extracting Diverse Features
- Title(参考訳): fv-train: 多様な特徴抽出による有限個の量子ビットを用いた量子畳み込みニューラルネットワークトレーニング
- Authors: Hankyul Baek, Won Joon Yun and Joongheon Kim
- Abstract要約: QCNNの畳み込みフィルタは、量子ベースのアンサッツを用いて固有の特徴を抽出するので、バレンプラトーを防ぐために有限個の量子ビットのみを使用するべきである。
有限個の量子ビットのみを使用しながら特徴抽出を最適化する新しいQCNNトレーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.261689483681145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum convolutional neural network (QCNN) has just become as an emerging
research topic as we experience the noisy intermediate-scale quantum (NISQ) era
and beyond. As convolutional filters in QCNN extract intrinsic feature using
quantum-based ansatz, it should use only finite number of qubits to prevent
barren plateaus, and it introduces the lack of the feature information. In this
paper, we propose a novel QCNN training algorithm to optimize feature
extraction while using only a finite number of qubits, which is called
fidelity-variation training (FV-Training).
- Abstract(参考訳): 量子畳み込みニューラルネットワーク(QCNN)は、ノイズの多い中間スケール量子(NISQ)時代を経験するにつれ、新たな研究トピックとしてなってきた。
qcnnの畳み込みフィルタは量子ベースのアンサッツを用いて固有の特徴を抽出するため、不毛高原を防ぐために有限個の量子ビットのみを使用し、特徴情報の欠如をもたらす。
本稿では,有限個の量子ビットのみを用いて特徴抽出を最適化する新しいQCNNトレーニングアルゴリズムを提案する。
関連論文リスト
- QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - 3D Scalable Quantum Convolutional Neural Networks for Point Cloud Data
Processing in Classification Applications [10.90994913062223]
量子畳み込みニューラルネットワーク(QCNN)は、分類アプリケーションにおけるポイントクラウドデータ処理のために提案される。
分類アプリケーションにおけるポイントクラウドデータ処理のための3DスケーラブルQCNN(sQCNN-3D)を提案する。
論文 参考訳(メタデータ) (2022-10-18T10:14:03Z) - QuCNN : A Quantum Convolutional Neural Network with Entanglement Based
Backpropagation [9.760266670459446]
QuCNNはパラメータ化されたマルチ量子状態ベースのニューラルネットワーク層で、各量子フィルタ状態と各量子データ状態の類似性を演算する。
バック伝搬は単一アンシラビット量子ルーチンによって達成できる。
MNISTイメージの小さなサブセットにデータ状態とフィルタ状態の畳み込み層を適用して検証する。
論文 参考訳(メタデータ) (2022-10-11T13:36:15Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
我々は、スケーラブル量子畳み込みニューラルネットワーク(sQCNN)と呼ばれる量子ニューラルネットワーク(QCNN)の新バージョンを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T02:07:00Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。