論文の概要: A composable machine-learning approach for steady-state simulations on
high-resolution grids
- arxiv url: http://arxiv.org/abs/2210.05837v1
- Date: Tue, 11 Oct 2022 23:50:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 15:14:41.501568
- Title: A composable machine-learning approach for steady-state simulations on
high-resolution grids
- Title(参考訳): 高分解能グリッド上での定常シミュレーションのための合成可能な機械学習手法
- Authors: Rishikesh Ranade, Chris Hill, Lalit Ghule, Jay Pathak
- Abstract要約: CoMLSim(Composable Machine Learning Simulator)は、高解像度グリッド上でPDEをシミュレートすることができる。
提案手法は,従来のPDE解法と局所学習および低次元多様体技術を組み合わせたものである。
- 参考スコア(独自算出の注目度): 0.6554326244334866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we show that our Machine Learning (ML) approach, CoMLSim
(Composable Machine Learning Simulator), can simulate PDEs on highly-resolved
grids with higher accuracy and generalization to out-of-distribution source
terms and geometries than traditional ML baselines. Our unique approach
combines key principles of traditional PDE solvers with local-learning and
low-dimensional manifold techniques to iteratively simulate PDEs on large
computational domains. The proposed approach is validated on more than 5
steady-state PDEs across different PDE conditions on highly-resolved grids and
comparisons are made with the commercial solver, Ansys Fluent as well as 4
other state-of-the-art ML methods. The numerical experiments show that our
approach outperforms ML baselines in terms of 1) accuracy across quantitative
metrics and 2) generalization to out-of-distribution conditions as well as
domain sizes. Additionally, we provide results for a large number of ablations
experiments conducted to highlight components of our approach that strongly
influence the results. We conclude that our local-learning and
iterative-inferencing approach reduces the challenge of generalization that
most ML models face.
- Abstract(参考訳): 本稿では,我々の機械学習(ML)アプローチであるCoMLSim(Composable Machine Learning Simulator)が,従来のMLベースラインよりも高い精度で高解像度グリッド上でPDEをシミュレートできることを示す。
従来のpdeソルバの重要な原理と局所学習と低次元多様体法を組み合わせて,大規模計算領域でpdeを反復的にシミュレートする。
提案手法は,高分解能グリッド上でのPDE条件の異なる5つ以上の定常PDEに対して検証し,市販の解法Ansys Fluentと4つの最先端ML手法との比較を行った。
数値実験により,我々の手法はMLベースラインより優れていることが示された。
1)定量的指標及び精度
2) 分布外条件と領域サイズへの一般化。
さらに,本研究の成果に強く影響するアプローチの構成要素を明らかにするために,多数の実験を行った。
ローカルラーニングと反復推論のアプローチは、ほとんどのmlモデルが直面する一般化の課題を軽減します。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics [8.90237460752114]
このトピックは、マルチタスク学習(multitask learning)と呼ばれる、シングルまたはPDE問題の集合を解決するための、幅広いメソッドとモデルを含んでいる。
PIMLは、PDE問題を解決する際に、大規模なデータの代わりに機械学習モデルのトレーニングプロセスに物理法則を組み込むことによって特徴付けられる。
論文 参考訳(メタデータ) (2024-02-16T23:21:40Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
量子化は、性能を維持しながら推論の計算コストを下げることができることを示す。
4つの標準PDEデータセットと3つのネットワークアーキテクチャの結果、量子化対応のトレーニングは、設定と3桁のFLOPで機能することがわかった。
論文 参考訳(メタデータ) (2023-08-14T09:21:19Z) - Learning Neural PDE Solvers with Parameter-Guided Channel Attention [17.004380150146268]
天気予報、分子動力学、逆設計といった応用領域では、MLベースの代理モデルがますます使われている。
本稿では,ニューラルサロゲートモデルのためのチャネル注意埋め込み(CAPE)コンポーネントと,シンプルで効果的なカリキュラム学習戦略を提案する。
CAPEモジュールは、未知のPDEパラメータに適応できるように、ニューラルPDEソルバと組み合わせることができる。
論文 参考訳(メタデータ) (2023-04-27T12:05:34Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Learning to correct spectral methods for simulating turbulent flows [6.110864131646294]
古典的数値手法と機械学習のハイブリッドにより、どちらの手法よりも大幅に改善できることが示される。
具体的には、流体力学の3つの共通偏微分方程式に対するML拡張スペクトル解法を開発する。
論文 参考訳(メタデータ) (2022-07-01T17:13:28Z) - A composable autoencoder-based iterative algorithm for accelerating
numerical simulations [0.0]
CoAE-MLSimは教師なし、低次元の局所的手法であり、商用PDEソルバで使われる重要なアイデアから動機づけられている。
計算速度、精度、スケーラビリティ、様々なPDE条件に対する一般化を実証するために、様々な複雑なエンジニアリングケースでテストされている。
論文 参考訳(メタデータ) (2021-10-07T20:22:37Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z) - Multi-Fidelity High-Order Gaussian Processes for Physical Simulation [24.033468062984458]
高忠実度偏微分方程式(PDE)は低忠実度偏微分方程式よりも高価である。
複雑な相関関係を捉えることができるMFHoGP(Multi-Fidelity High-Order Gaussian Process)を提案する。
MFHoGPは、情報を融合するために基礎を伝播し、基礎重みよりも先に深い行列GPを配置する。
論文 参考訳(メタデータ) (2020-06-08T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。