論文の概要: Learned Lifted Linearization Applied to Unstable Dynamic Systems Enabled
by Koopman Direct Encoding
- arxiv url: http://arxiv.org/abs/2210.13602v1
- Date: Mon, 24 Oct 2022 20:55:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 16:09:17.706818
- Title: Learned Lifted Linearization Applied to Unstable Dynamic Systems Enabled
by Koopman Direct Encoding
- Title(参考訳): クープマン直接符号化による不安定な動的システムへの適用
- Authors: Jerry Ng, H. Harry Asada
- Abstract要約: DMDや他のデータ駆動手法は不安定なシステムに適用した場合、クープマンモデルを構築する上で根本的な困難に直面していることが知られている。
ここでは, 非線形状態方程式に関する知識を, 有効観測値の集合を見つけるための学習手法に組み込むことで, 問題を解く。
提案手法は既存のDMDおよびデータ駆動方式よりも劇的に改善されている。
- 参考スコア(独自算出の注目度): 11.650381752104296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a Koopman lifting linearization method that is applicable
to nonlinear dynamical systems having both stable and unstable regions. It is
known that DMD and other standard data-driven methods face a fundamental
difficulty in constructing a Koopman model when applied to unstable systems.
Here we solve the problem by incorporating knowledge about a nonlinear state
equation with a learning method for finding an effective set of observables. In
a lifted space, stable and unstable regions are separated into independent
subspaces. Based on this property, we propose to find effective observables
through neural net training where training data are separated into stable and
unstable trajectories. The resultant learned observables are used for
constructing a linear state transition matrix using method known as Direct
Encoding, which transforms the nonlinear state equation to a state transition
matrix through inner product computations with the observables. The proposed
method shows a dramatic improvement over existing DMD and data-driven methods.
- Abstract(参考訳): 本稿では,安定領域と不安定領域の両方を有する非線形力学系に適用可能なkoopman昇降線形化法を提案する。
DMDや他の標準データ駆動手法は不安定なシステムに適用する場合、クープマンモデルを構築する上で根本的な困難に直面していることが知られている。
ここでは, 非線形状態方程式に関する知識を, 有効観測値の集合を求める学習手法に組み込むことで, 問題を解く。
持ち上げ空間では、安定領域と不安定領域は独立部分空間に分離される。
この特性に基づいて,トレーニングデータを安定かつ不安定な軌道に分離するニューラルネットトレーニングを通じて,効果的な観測可能性を求める。
学習された可観測物は、非線形状態方程式を状態遷移行列に変換する直接符号化と呼ばれる手法を用いて線形状態遷移行列を構築するために用いられる。
提案手法は既存のDMDおよびデータ駆動方式よりも劇的に改善されている。
関連論文リスト
- Learning Control-Oriented Dynamical Structure from Data [25.316358215670274]
一般非線形制御アフィン系に対する状態依存非線形トラッキングコントローラの定式化について論じる。
安定軌跡追跡における学習版の有効性を実証的に実証した。
論文 参考訳(メタデータ) (2023-02-06T02:01:38Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Learning Stable Koopman Embeddings [9.239657838690228]
本稿では,非線形システムの安定モデル学習のための新しいデータ駆動手法を提案する。
離散時間非線形契約モデルはすべて、我々のフレームワークで学習できることを実証する。
論文 参考訳(メタデータ) (2021-10-13T05:44:13Z) - Deep Learning Enhanced Dynamic Mode Decomposition [0.0]
畳み込みオートエンコーダネットワークを用いて、観測対象の最適なファミリーを同時に見つける。
また,観測可能空間への流れの正確な埋め込みと,観測可能空間の流れ座標への浸漬も生成する。
このネットワークはフローのグローバルな変換をもたらし、EDMDとデコーダネットワークを介して将来の状態を予測する。
論文 参考訳(メタデータ) (2021-08-10T03:54:23Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
ガウス過程の微分可能性を利用して、真の連続力学の状態依存線形化近似を作成する方法を示す。
9次元セグウェイのような不安定なシステムのシステムダイナミクスを反復的に学習することで、アプローチを検証する。
論文 参考訳(メタデータ) (2021-03-08T05:08:47Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - Derivative-Based Koopman Operators for Real-Time Control of Robotic
Systems [14.211417879279075]
本稿では, モデル誤差を拘束する非線形力学をデータ駆動で同定するための一般化可能な手法を提案する。
クープマン演算子に基づく線形表現を構築し,テイラー級数精度解析を用いて誤差境界を導出する。
制御と組み合わせると、非線形系のクープマン表現は競合する非線形モデリング法よりも極端に優れた性能を持つ。
論文 参考訳(メタデータ) (2020-10-12T15:15:13Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - Sparse Identification of Nonlinear Dynamical Systems via Reweighted
$\ell_1$-regularized Least Squares [62.997667081978825]
本研究は, 非線形系の制御方程式をノイズ状態測定から復元するための繰り返しスパース規則化回帰法を提案する。
本研究の目的は、状態測定ノイズの存在下での手法の精度とロバスト性を改善することである。
論文 参考訳(メタデータ) (2020-05-27T08:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。