論文の概要: Fock-space Schrieffer--Wolff transformation: classically-assisted
rank-reduced quantum phase estimation algorithm
- arxiv url: http://arxiv.org/abs/2211.10529v1
- Date: Fri, 18 Nov 2022 23:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 04:16:15.700616
- Title: Fock-space Schrieffer--Wolff transformation: classically-assisted
rank-reduced quantum phase estimation algorithm
- Title(参考訳): Fock-space Schrieffer--Wolff変換:古典的なランク誘導量子位相推定アルゴリズム
- Authors: Karol Kowalski, Nicholas P. Bauman
- Abstract要約: 本稿では,分子系における電子ハミルトニアンのシュリーファー-ヴォルフ変換に着目した。
我々は、SW変換のフォック空間不変量を利用することで、量子ビットマップされた類似性の変換ハミルトン多様体の局所性を大幅に増大させることができることを示した。
RRST形式主義は、量子回路の複雑さを減少させる近似スキームの新しいクラスを開発するための設計原理として機能する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an extension of many-body downfolding methods to reduce the
resources required in the quantum phase estimation (QPE) algorithm. In this
paper, we focus on the Schrieffer--Wolff (SW) transformation of the electronic
Hamiltonians for molecular systems that provides significant simplifications of
quantum circuits for simulations of quantum dynamics. We demonstrate that by
employing Fock-space variants of the SW transformation (or rank-reducing
similarity transformations (RRST)) one can significantly increase the locality
of the qubit-mapped similarity transformed Hamiltonians. The practical
utilization of the SW-RRST formalism is associated with a series of
approximations discussed in the manuscript. In particular, amplitudes that
define RRST can be evaluated using conventional computers and then encoded on
quantum computers. The SW-RRST QPE quantum algorithms can also be viewed as an
extension of the standard state-specific coupled-cluster downfolding methods to
provide a robust alternative to the traditional QPE algorithms to identify the
ground and excited states for systems with various numbers of electrons using
the same Fock-space representations of the downfolded Hamiltonian.The RRST
formalism serves as a design principle for developing new classes of
approximate schemes that reduce the complexity of quantum circuits.
- Abstract(参考訳): 本稿では,量子位相推定(QPE)アルゴリズムに必要な資源を削減するために,多体ダウンフォールディング法の拡張を提案する。
本稿では、量子力学シミュレーションのための量子回路の大幅な単純化を提供する分子系に対する電子ハミルトニアンのシュリーファー-ウォルフ変換に焦点を当てる。
sw変換のフォック空間変種(またはランク還元相似変換(rrst))を用いることで、キュービットマップ付き相似性の局所性を著しく増加させることができる。
SW-RRSTフォーマリズムの実践的利用は、原稿で議論された一連の近似と関連している。
特に、RRSTを定義する振幅は、従来のコンピュータを用いて評価され、量子コンピュータに符号化される。
The SW-RRST QPE quantum algorithms can also be viewed as an extension of the standard state-specific coupled-cluster downfolding methods to provide a robust alternative to the traditional QPE algorithms to identify the ground and excited states for systems with various numbers of electrons using the same Fock-space representations of the downfolded Hamiltonian.The RRST formalism serves as a design principle for developing new classes of approximate schemes that reduce the complexity of quantum circuits.
関連論文リスト
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
我々は、ハミルトニアン相状態(HPS)問題と呼ばれる量子硬度仮定を導入する。
我々は、我々の仮定が少なくとも完全に量子的であることを示し、すなわち片方向関数を構成するのに使用できない。
仮定とその変形により、多くの擬似ランダム量子プリミティブを効率的に構築できることを示す。
論文 参考訳(メタデータ) (2024-10-10T16:10:10Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
量子最適化と古典的機械学習を組み合わせたハイブリッドアルゴリズムを提案する。
従来の位相遷移の同定にはLASSO、トポロジカル遷移にはTransformerモデルを用いる。
我々のプロトコルは効率と精度を大幅に向上させ、量子コンピューティングと機械学習の統合における新たな道を開く。
論文 参考訳(メタデータ) (2024-05-14T09:01:41Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
時間進化作用素は、量子コンピュータにおける化学実験の正確な計算において重要な役割を果たす。
我々は、運動エネルギー演算子の量子化のための新しい符号化法、すなわち量子近似時間発展法(QATE)を提案している。
論文 参考訳(メタデータ) (2023-10-05T05:25:38Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Reducing Unitary Coupled Cluster Circuit Depth by Classical Stochastic
Amplitude Pre-Screening [0.0]
Unitary Coupled Cluster (UCC)アプローチは、量子化学計算を実行するために量子ハードウェアを利用するための魅力的な方法である。
本稿では,従来のUCC前処理ステップを用いてUCCアンサッツの重要な励起を判定する,古典量子と古典量子の併用手法を提案する。
論文 参考訳(メタデータ) (2021-08-24T18:34:14Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。