Heat and Work in Quantum Thermodynamics: a Cybernetic Approach
- URL: http://arxiv.org/abs/2403.02022v2
- Date: Wed, 27 Mar 2024 12:57:11 GMT
- Title: Heat and Work in Quantum Thermodynamics: a Cybernetic Approach
- Authors: William Rupush, Oscar Grånäs,
- Abstract summary: We present a new proposal for distinguishing heat from work based on a control-theoretic observability decomposition.
We derive a Hermitian operator representing instantaneous dissipation of observable energy, and suggest a generalization of the von-Neumann entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new proposal for distinguishing heat from work based on a control-theoretic observability decomposition. We derive a Hermitian operator representing instantaneous dissipation of observable energy, and suggest a generalization of the von-Neumann entropy which can account for the model-uncertainty also present in pure states if the measured observables are informationally incomplete. In this view, the transition from a fundamental to a thermodynamic model consists in mapping the fundamental density matrix to an effective one, generally of lower dimension, encoding only what is observable given the constraints of our sensor and actuator capabilities. The generalized entropy captures the information loss incurred in this mapping. The theory is illustrated for the central spin model, where we show that the application of external controls can increase the size of thermal fluctuations and lower the entropy.
Related papers
- Quantum Entanglement and the Thermal Hadron [0.0]
This paper tests how effectively the bound states of strongly interacting gauge theories are amenable to an emergent description as a thermal ensemble.
This description can be derived from a conjectured minimum free energy principle, with the entanglement entropy of two-parton subsystems playing the role of thermodynamic entropy.
arXiv Detail & Related papers (2022-11-25T19:00:03Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Gauge invariant quantum thermodynamics: consequences for the first law [0.0]
Information theory plays a major role in the identification of thermodynamic functions.
We explicitly construct physically motivated gauge transformations which encode a gentle variant of coarse-graining behind thermodynamics.
As a consequence, we reinterpret quantum work and heat, as well as the role of quantum coherence.
arXiv Detail & Related papers (2021-04-20T17:53:16Z) - Catalytic Entropy Principles [1.2691047660244335]
entropy shows an unavoidable tendency of disorder in thermostatistics according to the second thermodynamics law.
We present the first unified principle consistent with the second thermodynamics law in terms of general quantum entropies.
Results should be interesting in the many-body theory and long-range quantum information processing.
arXiv Detail & Related papers (2021-04-08T01:13:36Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum thermodynamics of two bosonic systems [0.0]
We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
arXiv Detail & Related papers (2020-01-14T09:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.