論文の概要: Acceleration AI Ethics, the Debate between Innovation and Safety, and
Stability AI's Diffusion versus OpenAI's Dall-E
- arxiv url: http://arxiv.org/abs/2212.01834v1
- Date: Sun, 4 Dec 2022 14:54:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:17:41.643730
- Title: Acceleration AI Ethics, the Debate between Innovation and Safety, and
Stability AI's Diffusion versus OpenAI's Dall-E
- Title(参考訳): アクセラレーションAI倫理、イノベーションと安全の議論、安定したAIの拡散、OpenAIのDall-E
- Authors: James Brusseau
- Abstract要約: このプレゼンテーションは、倫理をイノベーションアクセラレータとして再構成することで反応する。
倫理学の研究は、外部からの機能ではなく、AI開発と応用に埋め込まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One objection to conventional AI ethics is that it slows innovation. This
presentation responds by reconfiguring ethics as an innovation accelerator. The
critical elements develop from a contrast between Stability AI's Diffusion and
OpenAI's Dall-E. By analyzing the divergent values underlying their opposed
strategies for development and deployment, five conceptions are identified as
common to acceleration ethics. Uncertainty is understood as positive and
encouraging, rather than discouraging. Innovation is conceived as intrinsically
valuable, instead of worthwhile only as mediated by social effects. AI problems
are solved by more AI, not less. Permissions and restrictions governing AI
emerge from a decentralized process, instead of a unified authority. The work
of ethics is embedded in AI development and application, instead of functioning
from outside. Together, these attitudes and practices remake ethics as
provoking rather than restraining artificial intelligence.
- Abstract(参考訳): 従来のAI倫理に対する反対の1つは、イノベーションを遅らせることである。
このプレゼンテーションは、倫理をイノベーションアクセラレータとして再構成することで反応する。
重要な要素は、Stable AIのDiffusionとOpenAIのDall-Eの対比から生まれる。
開発・展開戦略の根底にある分岐値を分析することにより、加速倫理に共通する5つの概念が特定される。
不確かさは否定するよりも、肯定的かつ奨励的であると理解されている。
イノベーションは本質的に価値のあるものだと考えられており、社会的効果によってのみ媒介される価値がある。
AIの問題は、AIによって解決される。
AIを管理する許可と規制は、統一された権限ではなく、分散されたプロセスから現れます。
倫理学の研究は、外部からの機能ではなく、AI開発と応用に組み込まれている。
これらの態度と実践は、人工知能を抑えるのではなく、倫理を挑発的なものにしている。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Beyond Bias and Compliance: Towards Individual Agency and Plurality of
Ethics in AI [0.0]
データをラベル付けする方法は、AIの振る舞いに不可欠な役割を担っている、と私たちは主張する。
本稿では,複数の値と個々人の表現の自由を許容する代替経路を提案する。
論文 参考訳(メタデータ) (2023-02-23T16:33:40Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
自律兵器、自動化された雇用損失、社会経済的不平等、データやアルゴリズムによる偏見、プライバシー侵害、ディープフェイクなど、人類にとってのAIリスクは数多く発生している。
社会的多様性、公平性、包摂性は、リスクを緩和し、価値を生み出し、社会正義を促進するAIの重要な成功要因と考えられている。
AIによる持続可能な未来に向けての旅では、優先事項としてAI倫理とガバナンスに取り組む必要があります。
論文 参考訳(メタデータ) (2022-09-28T22:23:10Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - From the Ground Truth Up: Doing AI Ethics from Practice to Principles [0.0]
最近のAI倫理は、抽象原則を実践に下方へ適用することに焦点を当てている。
この論文は反対方向に動く。
倫理的な洞察は、具体的な人間の問題に取り組んでいるAI設計者の生きた経験から生まれる。
論文 参考訳(メタデータ) (2022-01-05T15:33:33Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
本研究の目的は、ECCOLAの採用を促進するために、ECCOLAをデプロイメントモデルで拡張することである。
このモデルには、倫理的AI開発における倫理的ギャップや成果のコミュニケーションを容易にするための単純なメトリクスが含まれている。
論文 参考訳(メタデータ) (2021-10-12T12:22:34Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。