Implementation and Learning of Quantum Hidden Markov Models
- URL: http://arxiv.org/abs/2212.03796v3
- Date: Fri, 04 Oct 2024 17:23:48 GMT
- Title: Implementation and Learning of Quantum Hidden Markov Models
- Authors: Vanio Markov, Vladimir Rastunkov, Amol Deshmukh, Daniel Fry, Charlee Stefanski,
- Abstract summary: We propose a unitary parameterization and an efficient learning algorithm for Quantum Hidden Markov Models (QHMMs)
By leveraging the richer dynamics of quantum channels, we demonstrate the greater efficiency of quantum generators compared to classical ones.
We show that any QHMM can be efficiently implemented and simulated using a quantum circuit with mid-circuit measurements.
- Score: 0.0
- License:
- Abstract: In this article, we apply the theory of quantum channels and open-system state evolution to propose a unitary parameterization and an efficient learning algorithm for Quantum Hidden Markov Models (QHMMs). By leveraging the richer dynamics of quantum channels, we demonstrate the greater efficiency of quantum stochastic generators compared to classical ones. Specifically, we prove that a stochastic process can be simulated within a quantum Hilbert space using quadratically fewer dimensions than in a classical stochastic vector space. We show that any QHMM can be efficiently implemented and simulated using a quantum circuit with mid-circuit measurements. A key advantage for feasible QHMM learning in the hypothesis space of unitary circuits lies in the continuity of Stinespring's dilation. Specifically, if the unitary parameterizations of channels are close in the operator norm, the corresponding channels will be close in both diamond norm and Bures distance. This property forms the foundation for defining of efficient learning algorithms with continuous fitness landscapes. By employing the unitary parameterization of QHMMs, we establish a formal generative learning model. This model formalizes the empirical distributions of target stochastic process languages, defines the hypothesis space of quantum circuits, and introduces an empirical stochastic divergence measure-hypothesis fitness-as a criterion for learning success. The smooth mapping between the hypothesis and fitness spaces facilitates the development of efficient heuristic and gradient descent algorithms. We consider four examples of stochastic process languages and train QHMMs with hyperparameter-adaptive evolutionary search and multi-parameter nonlinear optimization technique applied to parameterized quantum ansatz circuits. We confirm our results by running optimal circuits on quantum hardware.
Related papers
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Symmetry enhanced variational quantum imaginary time evolution [1.6872254218310017]
We provide guidance for constructing parameterized quantum circuits according to the locality and symmetries of the Hamiltonian.
Our approach can be used to implement the unitary and anti-unitary symmetries of a quantum system.
Numerical results confirm that the symmetry-enhanced circuits outperform the frequently-used parametrized circuits in the literature.
arXiv Detail & Related papers (2023-07-25T16:00:34Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
We propose an approach for learning probability distributions as differentiable quantum circuits (DQC)
We perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit.
This allows fast sampling from parametrized distributions using a single-shot readout.
arXiv Detail & Related papers (2022-02-16T18:55:48Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
We study the phenomena of quantum chaos and complexity in the machine learning dynamics of Quantum Neural Network (QNN)
We employ a statistical and differential geometric approach to study the learning theory of QNN.
arXiv Detail & Related papers (2020-11-16T10:41:47Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.