Implementation and Learning of Quantum Hidden Markov Models
- URL: http://arxiv.org/abs/2212.03796v3
- Date: Fri, 04 Oct 2024 17:23:48 GMT
- Title: Implementation and Learning of Quantum Hidden Markov Models
- Authors: Vanio Markov, Vladimir Rastunkov, Amol Deshmukh, Daniel Fry, Charlee Stefanski,
- Abstract summary: We propose a unitary parameterization and an efficient learning algorithm for Quantum Hidden Markov Models (QHMMs)
By leveraging the richer dynamics of quantum channels, we demonstrate the greater efficiency of quantum generators compared to classical ones.
We show that any QHMM can be efficiently implemented and simulated using a quantum circuit with mid-circuit measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we apply the theory of quantum channels and open-system state evolution to propose a unitary parameterization and an efficient learning algorithm for Quantum Hidden Markov Models (QHMMs). By leveraging the richer dynamics of quantum channels, we demonstrate the greater efficiency of quantum stochastic generators compared to classical ones. Specifically, we prove that a stochastic process can be simulated within a quantum Hilbert space using quadratically fewer dimensions than in a classical stochastic vector space. We show that any QHMM can be efficiently implemented and simulated using a quantum circuit with mid-circuit measurements. A key advantage for feasible QHMM learning in the hypothesis space of unitary circuits lies in the continuity of Stinespring's dilation. Specifically, if the unitary parameterizations of channels are close in the operator norm, the corresponding channels will be close in both diamond norm and Bures distance. This property forms the foundation for defining of efficient learning algorithms with continuous fitness landscapes. By employing the unitary parameterization of QHMMs, we establish a formal generative learning model. This model formalizes the empirical distributions of target stochastic process languages, defines the hypothesis space of quantum circuits, and introduces an empirical stochastic divergence measure-hypothesis fitness-as a criterion for learning success. The smooth mapping between the hypothesis and fitness spaces facilitates the development of efficient heuristic and gradient descent algorithms. We consider four examples of stochastic process languages and train QHMMs with hyperparameter-adaptive evolutionary search and multi-parameter nonlinear optimization technique applied to parameterized quantum ansatz circuits. We confirm our results by running optimal circuits on quantum hardware.
Related papers
- Learning to Measure Quantum Neural Networks [10.617463958884528]
We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.
Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.
Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
arXiv Detail & Related papers (2025-01-10T02:28:19Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Faster Quantum Simulation Of Markovian Open Quantum Systems Via Randomisation [0.0]
We introduce novel non-probabilistic algorithms for simulating Markovian open quantum systems using randomisation.
Our methods maintain the physicality of the system's evolution but also enhance the scalability and precision of quantum simulations.
This work is the first to apply randomisation techniques to the simulation of open quantum systems, highlighting their potential to enable faster and more accurate simulations.
arXiv Detail & Related papers (2024-08-21T15:06:29Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Symmetry enhanced variational quantum imaginary time evolution [1.6872254218310017]
We provide guidance for constructing parameterized quantum circuits according to the locality and symmetries of the Hamiltonian.
Our approach can be used to implement the unitary and anti-unitary symmetries of a quantum system.
Numerical results confirm that the symmetry-enhanced circuits outperform the frequently-used parametrized circuits in the literature.
arXiv Detail & Related papers (2023-07-25T16:00:34Z) - A new quantum machine learning algorithm: split hidden quantum Markov model inspired by quantum conditional master equation [14.262911696419934]
We introduce the split HQMM (SHQMM) for implementing the hidden quantum Markov process.
Experimental results suggest our model outperforms previous models in terms of scope of applications and robustness.
arXiv Detail & Related papers (2023-07-17T16:55:26Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
We propose an approach for learning probability distributions as differentiable quantum circuits (DQC)
We perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit.
This allows fast sampling from parametrized distributions using a single-shot readout.
arXiv Detail & Related papers (2022-02-16T18:55:48Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
We study the phenomena of quantum chaos and complexity in the machine learning dynamics of Quantum Neural Network (QNN)
We employ a statistical and differential geometric approach to study the learning theory of QNN.
arXiv Detail & Related papers (2020-11-16T10:41:47Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.